background image

CY7C1246V18, CY7C1257V18
CY7C1248V18, CY7C1250V18

Document Number: 001-06348  Rev. *D

Page 8 of 27

Functional Overview

The CY7C1246V18, CY7C1257V18, CY7C1248V18, and
CY7C1250V18 are synchronous pipelined Burst SRAMs
equipped with a DDR interface. 

Accesses for both ports are initiated on the Positive Input Clock
(K). All synchronous input and output timing refer to the rising
edge of the input clocks (K and K).

All synchronous data inputs (D

[x:0]

) pass through input registers

controlled by the rising edge of the input clocks (K and K). All
synchronous data outputs (Q

[x:0]

) pass through output registers

controlled by the rising edge of the input clocks (K and K). 

All synchronous control (R/W, LD, BWS

[0:X]

) inputs pass through

input registers controlled by the rising edge of the input clock
(K\K). 

CY7C1248V18 is described in the following sections. The same
basic descriptions apply to CY7C1246V18, CY7C1257V18, and
CY7C1250V18.

Read Operations

The CY7C1248V18 is organized internally as a single array of
2M x 18. Accesses are completed in a burst of two sequential
18-bit data words. Read operations are initiated by asserting
R/W

 

HIGH and LD LOW at the rising edge of the positive input

clock (K). Following the next two K clock rising edges, the corre-
sponding 18-bit word of data from this address location is driven
onto the Q

[17:0]

 using K as the output timing reference. On the

subsequent rising edge of K the next 18-bit data word is driven
onto the Q

[17:0]

. The requested data is valid 0.45 ns from the

rising edge of the input clock (K and K). To maintain the internal
logic, each read access must be allowed to complete. Read
accesses can be initiated on every rising edge of the positive
input clock (K).

When read access is deselected, the CY7C1248V18 completes
the pending read transactions. Synchronous internal circuitry
automatically tri-states the outputs following the next rising edge
of the positive input clock (K). This enables a seamless transition
between devices without the insertion of wait states in a depth
expanded memory. 

Write Operations

Write operations are initiated by asserting R/W

 

LOW and LD

LOW at the rising edge of the positive input clock (K). The
address presented to Address inputs is stored in the Write
Address register. On the following K clock rise, the data
presented to D

[17:0]

 is latched and stored into the 18-bit Write

Data register, provided BWS

[1:0]

 are both asserted active. On the

subsequent rising edge of the Negative Input Clock (K), the infor-
mation presented to D

[17:0]

 is also stored into the Write Data

register, provided BWS

[1:0]

 are both asserted active. The 36 bits

of data are then written into the memory array at the specified
location. Write accesses can be initiated on every rising edge of
the positive input clock (K). Doing so pipelines the data flow such
that 18 bits of data can be transferred into the device on every
rising edge of the input clocks (K and K). 

When write access is deselected, the device ignores all inputs
after the pending write operations are completed. 

Byte Write Operations

Byte write operations are supported by the CY7C1248V18. A
write operation is initiated as described in the 

Write Operations

section. The bytes that are written are determined by BWS

0

 and

BWS

1

, which are sampled with each set of 18-bit data words.

Asserting the appropriate Byte Write Select input during the data
portion of a write latches the data being presented and written
into the device. Deasserting the Byte Write Select input during
the data portion of a write enables the data stored in the device
for that byte to remain unaltered. This feature can be used to
simplify read/modify/write operations to a byte write operation.

Double Data Rate Operation 

The CY7C1248V18 enables high-performance operation
through high clock frequencies (achieved through pipelining) and
DDR mode of operation. The CY7C1248V18 requires two No
Operation (NOP) cycles when transitioning from a read to a write
cycle. At higher frequencies, some applications may require a
third NOP cycle to avoid contention.

If a read occurs after a write cycle, address and data for the write
are stored in registers. The write information must be stored
because the SRAM cannot perform the last word write to the
array without conflicting with the read. The data stays in this
register until the next write cycle occurs. On the first write cycle
after the read(s), the stored data from the earlier write is written
into the SRAM array. This is called a Posted Write.

If a read is performed on the same address on which a write is
performed in the previous cycle, the SRAM reads out the most
current data. The SRAM does this by bypassing the memory
array and reading the data from the registers.

Depth Expansion

Depth expansion requires replicating the LD control signal for
each bank. All other control signals can be common between
banks as appropriate.

Programmable Impedance

An external resistor, RQ, must be connected between the ZQ pin
on the SRAM and V

SS 

to enable the SRAM to adjust its output

driver impedance. The value of RQ must be 5x the value of the
intended line impedance driven by the SRAM. The allowable
range of RQ to guarantee impedance matching with a tolerance
of ±15%, is between 175

Ω

 and 350

Ω

with V

DDQ

= 1.5V.  The

output impedance is adjusted every 1024 cycles upon power up
to account for drifts in supply voltage and temperature.

Echo Clocks

Echo clocks are provided on the DDR-II+ to simplify data capture
on high speed systems. Two echo clocks are generated by the
DDR-II+. CQ is referenced with respect to K and CQ is refer-
enced with respect to K. These are free-running clocks and are
synchronized to the input clock of the DDR-II+. The timing for the
echo clocks is shown in 

“Switching Characteristics” on page 22

.

[+] Feedback 

[+] Feedback 

Содержание CY7C1246V18

Страница 1: ...V18 are 1 8V Synchronous Pipelined SRAM equipped with DDR II architecture The DDR II consists of an SRAM core with advanced synchronous peripheral circuitry Addresses for read and write are latched on...

Страница 2: ...Data Reg R W DQ 7 0 Output Logic Reg Reg Reg 8 8 16 8 NWS 1 0 VREF Write Add Decode 8 8 LD Control 21 2M x 8 Array 2M x 8 Array Write Reg Write Reg CQ CQ R W DOFF QVLD 8 CLK A 20 0 Gen K K Control Lo...

Страница 3: ...W DQ 17 0 Output Logic Reg Reg Reg 18 18 36 18 BWS 1 0 VREF Write Add Decode 18 18 LD Control 20 1M x 18 Array 1M x 18 Array Write Reg Write Reg CQ CQ R W DOFF QVLD 18 CLK A 18 0 Gen K K Control Logic...

Страница 4: ...NC NC VSS NC DQ2 NC NC NC VREF NC NC VDDQ NC VDDQ NC NC VDDQ VDDQ VDDQ NC VDDQ NC DQ1 NC VDDQ VDDQ NC VSS NC NC NC TDI TMS VSS A NC A NC NC NC ZQ NC DQ0 NC NC NC NC A CY7C1257V18 4M x 9 2 3 4 5 6 7 1...

Страница 5: ...NC NC NC VREF NC DQ3 VDDQ NC VDDQ NC DQ5 VDDQ VDDQ VDDQ NC VDDQ NC DQ4 NC VDDQ VDDQ NC VSS NC NC NC TDI TMS VSS A NC A NC NC NC ZQ NC DQ2 NC DQ1 NC NC A CY7C1250V18 1M x 36 2 3 4 5 6 7 1 A B C D E F G...

Страница 6: ...8 0 and BWS1 controls D 17 9 CY7C1250V18 BWS0 controls D 8 0 BWS1 controls D 17 9 BWS2 controls D 26 18 and BWS3 controls D 35 27 All the Byte Write Selects are sampled on the same edge as the data De...

Страница 7: ...gh a 10 Kohm or less pull up resistor The device behaves in DDR I mode when the DLL is turned off In this mode the device can be operated at a frequency of up to 167 MHz with DDR I timing TDO Output T...

Страница 8: ...data flow such that 18 bits of data can be transferred into the device on every rising edge of the input clocks K and K When write access is deselected the device ignores all inputs after the pending...

Страница 9: ...he truth table for the CY7C1246V18 CY7C1257V18 CY7C1248V18 and CY7C1250V18 follows 2 3 4 5 6 7 Operation K LD R W DQ DQ Write Cycle Load address wait one cycle input write data on consecutive K and K...

Страница 10: ...7C1246V18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltered CY7C1248V18 only the upper byte D 17 9 is written into the device D 8 0 remains unaltered H L L H During the da...

Страница 11: ...y the byte D 17 9 is written into the device D 8 0 and D 35 18 remain unaltered H L H H L H During the data portion of a write sequence only the byte D 17 9 is written into the device D 8 0 and D 35 1...

Страница 12: ...dge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP Contr...

Страница 13: ...ster After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD places an in...

Страница 14: ...ler follows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR SELECT IR SCAN CAPTURE IR SHIFT IR EXIT1 IR PAUSE IR EXIT2 IR UPDATE IR 1 0 1 1 0...

Страница 15: ...GH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 Instr...

Страница 16: ...TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions Figure...

Страница 17: ...struction Codes Instruction Code Description EXTEST 000 Captures the input output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO Thi...

Страница 18: ...35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P 15 9M...

Страница 19: ...power and clock K K for 2048 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions at...

Страница 20: ...0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Voltage IOL 0 1 mA Nominal Impedance VSS 0 2 V VIH Input HIGH Voltage VREF 0 1 VDDQ 0 15 V VIL Input LOW Voltage 0 15 VREF 0 1 V IX Input L...

Страница 21: ...Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance per EIA JESD51 16 25 C W JC Thermal Resistance Junction to Case 2 91 C W AC Test Loads and Waveform...

Страница 22: ...2 ns tCQDOH tCQHQX Echo Clock High to Data Invalid 0 2 0 2 0 2 ns tCQH tCQHCQL Output Clock CQ CQ HIGH 23 0 88 1 03 1 15 ns tCQHCQH tCQHCQH CQ Clock Rise to CQ Clock Rise 23 rising edge to rising edg...

Страница 23: ...OH QVLD t NOP DQ KHKH 12 Read Latency 2 0 Cycles NOP NOP CCQO tSD HD tSD tHD t CLZ t CHZ D20 D21 D30 D31 t CQDOH Q00 Q11 Q01 Q10 tDOH tCO Q40 Q41 tCQD t t tCQH CQHCQH Notes 28 Q00 refers to output fro...

Страница 24: ...all Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1257V18 375BZI CY7C1248V18 375BZI CY7C1250V18 375BZI CY7C1246V18 375BZXI 51 85195 165 ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Pb...

Страница 25: ...00BZXC CY7C1246V18 300BZI 51 85195 165 ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1257V18 300BZI CY7C1248V18 300BZI CY7C1250V18 300BZI CY7C1246V18 300BZXI 51 85195 165 ball Fine P...

Страница 26: ...Y7C1250V18 Document Number 001 06348 Rev D Page 26 of 27 Package Diagram Figure 6 165 ball FBGA 15 x 17 x 1 40 mm 51 85195 0 2 2 8 8 8 3 4 0 0 2 2 4 0 6 7 44 6 7 0 2 0 2 3 2 0 490 3 2 3 3 4 3 0 7 4 G...

Страница 27: ...e changes without further notice to the materials described herein Cypress does not assume any liability arising out of the application or use of any product or circuit described herein Cypress does n...

Отзывы: