T H E S M A R T S O L U T I O N F O R E N E R G Y E F F I C I E N C Y
Rooftop (TRE) Series
R e v. : O c t o b e r 7 , 2 0 1 9
29
c l i m a t e m a s t e r. c o m
20
30.0
3.8
8.7
Operation not recommended
87.7
9.23
56.2
88.3
2.8
30
15.0
0.7
1.7
145.1
92.6
6.59
167.6
22.0
94.9
9.37
62.9
89.9
3.0
22.5
1.6
3.7
144.7
90.3
6.33
166.3
22.9
98.4
9.44
66.2
90.7
3.1
30.0
3.4
7.8
143.9
88.5
6.23
165.2
23.1
100.4
9.48
68.1
91.2
3.1
40
15.0
0.6
1.4
143.3
93.5
7.05
167.3
20.3
107.2
9.62
74.4
92.8
3.3
22.5
1.2
2.8
144.9
93.0
6.69
167.7
21.7
111.8
9.72
78.6
93.8
3.4
30.0
2.7
6.2
145.1
92.2
6.53
167.4
22.2
114.3
9.77
81.0
94.4
3.4
50
15.0
0.5
1.2
139.5
92.7
7.61
165.4
18.3
120.4
9.90
86.6
95.8
3.6
22.5
0.8
1.8
142.5
93.4
7.16
167.0
19.9
126.0
10.02
91.8
97.1
3.7
30.0
2.0
4.7
143.7
93.5
6.97
167.5
20.6
129.1
10.09
94.7
97.8
3.7
60
15.0
0.3
0.7
134.3
90.6
8.28
162.5
16.2
134.1
10.20
99.3
99.0
3.9
22.5
0.5
1.2
138.3
92.3
7.76
164.8
17.8
140.8
10.35
105.5
100.5
4.0
30.0
1.7
4.0
140.1
92.9
7.52
165.8
18.6
144.5
10.44
108.9
101.4
4.1
70
15.0
0.3
0.6
128.0
87.8
9.05
158.9
14.1
148.3
10.52
112.4
102.3
4.1
22.5
0.5
1.1
132.7
90.0
8.47
161.6
15.7
156.1
10.70
119.5
104.0
4.3
30.0
1.6
3.8
135.0
90.9
8.19
162.9
16.5
160.3
10.81
123.4
105.0
4.3
Water/Brine
Cooling - EAT 80/67°F
Heating - EAT 70°F
EWT
°
F
Flow
GPM
PD
PSI
PD
FT
TC
SC
kW
HR
EER
HC
kW
HE
LAT
COP
80
15.0
0.2
0.5
121.2
84.8
9.93
155.1
12.2
162.8
10.86
125.7
105.6
4.4
22.5
0.4
1.0
126.2
87.0
9.28
157.9
13.6
171.5
11.08
133.7
107.6
4.5
30.0
1.5
3.6
128.7
88.1
8.97
159.3
14.3
176.2
11.20
138.0
108.7
4.6
85
15.0
0.2
0.5
117.6
83.2
10.43
153.2
11.3
170.0
11.04
132.3
107.3
4.5
22.5
0.4
0.9
122.6
85.4
9.75
155.9
12.6
179.2
11.27
140.7
109.4
4.7
30.0
1.5
3.5
125.2
86.6
9.41
157.3
13.3
184.1
11.40
145.2
110.5
4.7
90
15.0
0.1
0.3
114.0
81.7
10.92
151.3
10.4
177.3
11.22
139.0
108.9
4.6
22.5
0.4
0.9
119.1
83.9
10.21
153.9
11.7
186.8
11.47
147.7
111.1
4.8
30.0
1.5
3.4
121.7
85.0
9.87
155.3
12.3
192.0
11.60
152.5
112.4
4.9
100
15.0
0.1
0.2
107.0
79.1
12.02
148.0
8.9
Operation not recommended
22.5
0.3
0.8
111.8
80.9
11.25
150.2
9.9
30.0
1.4
3.3
114.4
81.9
10.87
151.5
10.5
110
15.0
0.1
0.2
100.5
77.2
13.24
145.6
7.6
22.5
0.3
0.7
104.8
78.4
12.40
147.1
8.5
30.0
1.4
3.2
107.2
79.1
12.00
148.1
8.9
120
15.0
0.1
0.1
94.8
76.6
14.59
144.6
6.5
22.5
0.3
0.7
98.5
76.9
13.67
145.1
7.2
30.0
1.3
3.0
100.5
77.2
13.23
145.6
7.6
General Information
With the ClimaDry
®
II option, return air from the space
is cooled by the air-to-refrigerant (evaporator) coil,
and then reheated by the water-to-air (reheat) coil
to dehumidify the air, but maintain the same space
temperature (thus operating as a dehumidifier).
The moisture removal capability of the heat pump
is determined by the unit’s latent capacity rating.
Latent capacity equals Total capacity minus Sensible
capacity. Using unit performance data from submittals
(climatemaster.com) select the correct model, use your
maximum entering water temperature (EWT) and flow
rate to select TC and SC. For example, at 80°F [26.7°C]
EWT and 15 GPM, the moisture removal capability (latent
capacity) of a ClimateMaster TRE120 is 36.4 Mbtuh as
shown in figure 2.
Dividing the latent capacity by 1,069 BTU/LB of water
vapor at 80°F DB and 67°F WB [26.7°C DB and 19.4°C
WB] moist air enthalpy, converts the amount of moisture
removal to pounds per hour (multiply pounds per hour by
0.4536 to obtain kg/hr). Calculations are shown in figure 2.
Most ClimateMaster heat pumps have a sensible-to-total
(S/T) ratio of 0.72 to 0.82. Therefore, approximately, 25%
of the cooling capacity is dedicated to latent cooling
capacity (moisture removal). When selecting a unit with
ClimaDry
®
II, the space sensible and latent loads should
be calculated. If the unit will be used for space cooling, a
unit with at least enough capacity to satisfy the building
sensible load should be selected. If the latent cooling
load is not satisfied by the selection, a larger unit with
enough latent capacity will be required. If the unit will
be used for dehumidification purposes only, the latent
capacity is the only consideration necessary. In this case,
sensible load is immaterial.
Figure 2: Example TRE120 Performance
Dividing the latent
capacity by 1,069 BTU/
LB of water vapor at 80°F
DB and 67°F WB [26.7°C
DB and 19.4°C WB] moist
air enthalpy, converts
the amount of moisture
removal to pounds
per hour (multiply
pounds per hour by
0.4536 to obtain kg/hr).
Calculations are shown in
figure 2.
4000 CFM Nominal (Rated) Airflow
LC = TC - SC = 121.2 - 84.8 = 36.4 Mbtuh
36,400 Btuh ÷ 1,069 = 34.1 lbs/hr (15.4 kg/hr)