SECTION 7. MEASUREMENT PROGRAMMING EXAMPLES
7-15
PROGRAM
01:
P4
Excite,Delay,Volt(SE)
01:
5
Reps
02:
25
2500 mV 60 Hz rejection
Range
03:
1
IN Chan
04:
1
Excite all reps w/EXchan 1
05:
10
Delay (units .01sec)
06: 2000
mV Excitation
07:
1
Loc [:TEMP C #1]
08:
.001
Mult
09:
0
Offset
02:
P55
Polynomial
01:
5
Reps
02:
1
X Loc TEMP C #1
03:
1
F(X) Loc [:TEMP C #1]
04:
-53.784
C0
05:
147.97
C1
06:
-218.76
C2
07:
219.05
C3
08:
-111.34
C4
09:
23.365
C5
7.16 WATER LEVEL - GEOKON'S
VIBRATING WIRE PRESSURE SENSOR
The vibrating wire sensor utilizes a change in
the frequency of a vibrating wire to sense
pressure. Figure 7.16-1 illustrates how an
increase in pressure on the diaphragm
decreases the tension on the wire attached to
the diaphragm. A decrease in the wire tension
decreases the resonant frequency in the same
way that loosening a guitar string decreases its
frequency.
Vibrating Wire Measurement Instruction 28
excites the "plucking" and "pickup" coils shown
in Figure 7.16-1 with a "swept" frequency. A
"swept" frequency is a group of different
frequencies that are sent one right after another
starting with the lowest frequency and ending
with the highest. The lowest and highest
frequencies are entered by the user in units of
hundreds of Hz. This swept frequency causes
the wire to vibrate at each of the individual
frequencies. Ideally, all of the frequencies
except the one matching the resonant
frequency of the wire will die out in a very short
time. The wire will vibrate with the resonant
frequency for a relatively long period of time,
cutting the lines of flux in the "plucking" and
"pickup" coils and inducing the same frequency
on the lines to the CR10. Instruction 28 then
accurately measures how much time it takes to
receive a user specified number of cycles.
The vibrating wire requires temperature
compensation. A nonlinear thermistor built into
the probe is measured using Instruction 4, a
single-ended half bridge measurement with
excitation, and calculated with Instruction 55, a
fifth order polynomial instruction.
Campbell Scientific's AVW1 or AVW4 Vibrating
Wire Sensor Interface is required between the
sensor to the datalogger. The purpose is twofold:
•
12 volts can be used as the potential in the
swept frequency excitation, thus plucking
the wire harder than the maximum 2.5 volt
switched excitation. The result is a larger
magnitude signal for a longer time.
•
A transformer strips off any DC noise on
the signal, improving the ability to detect
cycles.
FIGURE 7.16-1. A Vibrating Wire Sensor
Содержание CR10 PROM
Страница 2: ...This is a blank page ...
Страница 4: ...This is a blank page ...
Страница 9: ...CR10 TABLE OF CONTENTS v LIST OF TABLES LT 1 LIST OF FIGURES LF 1 INDEX I 1 ...
Страница 10: ...CR10 TABLE OF CONTENTS vi This is a blank page ...
Страница 14: ...CR10 OVERVIEW OV 2 ...
Страница 15: ...CR10 OVERVIEW OV 3 FIGURE OV1 1 1 CR10 and Wiring Panel ...
Страница 16: ...CR10 OVERVIEW OV 4 FIGURE OV1 1 2 CR10 Wiring Panel Instruction Access ...
Страница 17: ...CR10 OVERVIEW OV 5 ...
Страница 34: ...CR10 OVERVIEW OV 22 ...
Страница 35: ...CR10 OVERVIEW OV 23 FIGURE OV6 1 1 Data Retrieval Hardware Options ...
Страница 36: ...CR10 OVERVIEW OV 24 OV7 SPECIFICATIONS ...
Страница 37: ...CR10 OVERVIEW OV 25 ...
Страница 38: ...CR10 OVERVIEW OV 26 ...
Страница 51: ...SECTION 1 FUNCTIONAL MODES 1 13 This is a blank page ...
Страница 53: ...2 2 ...
Страница 62: ...SECTION 3 INSTRUCTION SET BASICS 3 6 ...
Страница 63: ...SECTION 3 INSTRUCTION SET BASICS 3 7 ...
Страница 68: ...SECTION 3 INSTRUCTION SET BASICS 3 12 This is a blank page ...
Страница 74: ...SECTION 4 EXTERNAL STORAGE PERIPHERALS 4 6 ...
Страница 79: ...SECTION 4 EXTERNAL STORAGE PERIPHERALS 4 11 10 0X X is current address enter address to change to 1 8 ...
Страница 88: ...6 5 FIGURE 6 6 1 Addressing Sequence for the RF Modem ...
Страница 110: ...SECTION 7 MEASUREMENT PROGRAMMING EXAMPLES 7 17 FIGURE 7 16 2 Well Monitoring Example ...
Страница 132: ...SECTION 8 PROCESSING AND PROGRAM CONTROL EXAMPLES 8 13 This is a blank page ...
Страница 197: ...SECTION 13 CR10 MEASUREMENTS 13 18 FIGURE 13 5 1 Circuits Used with Instructions 4 9 ...
Страница 203: ...SECTION 13 CR10 MEASUREMENTS 13 24 This is a blank page ...
Страница 215: ...SECTION 14 INSTALLATION AND MAINTENANCE 14 12 This is a blank page ...
Страница 218: ...APPENDIX A GLOSSARY A 3 and computers in a terminal mode fall in this category ...
Страница 220: ...APPENDIX A GLOSSARY A 5 This is a blank page ...
Страница 228: ...APPENDIX C BINARY TELECOMMUNICATIONS C 6 This is a blank page ...
Страница 230: ...This is a blank page ...
Страница 232: ...This is a blank page ...
Страница 234: ...APPENDIX G CHANGING RAM OR PROM CHIPS G 2 FIGURE G 1 Disassembling CR10 ...
Страница 235: ...APPENDIX G CHANGING RAM OR PROM CHIPS G 3 FIGURE G 2 Jumper Settings for Different RAM Configurations in Early CR10s ...
Страница 236: ...APPENDIX G CHANGING RAM OR PROM CHIPS G 4 FIGURE G 3 Jumper Settings and Locations ...
Страница 237: ...APPENDIX G CHANGING RAM OR PROM CHIPS G 5 This is a blank page ...
Страница 241: ...LIST OF TABLES LT 4 This is a blank page ...
Страница 253: ...CR10 INDEX I 10 This is a blank page ...