background image

CG-PRC026C-GB

10

Unit Placement

Setting The  Unit

A base or foundation is not required if the selected unit 
location is level and strong enough to support the unit’s 
operating weight (see “Weights” section of this catalog).

For a detailed discussion of base and foundation 
construction, refer to the sound engineering bulletin or 
the unit IOM. Manuals are available through the local 
Trane offi ce.

HVAC equipment must be located to minimize sound 
and vibration transmission to the occupied spaces of 
the building structure it serves. If the equipment must 
be located in close proximity to a building, it should be 
placed next to an unoccupied space such as a storage 
room, mechanical room, etc. It is not recommended to 
locate the equipment near occupied, sound sensitive 
areas of the building or near windows. Locating the 
equipment away from structures will also prevent sound 
refl ection, which can increase sound levels at property 
lines or other sensitive points.

Isolation and Sound Emission

Structurally transmitted sound can be reduced 
by elastomeric vibration eliminators. Elastomeric 
isolators are generally effective in reducing vibratory 
noise generated by compressors, and therefore, are 
recommended for sound sensitive installations. An 
acoustical engineer should always be consulted in 
critical situations.

Figure 9 - Installation example

For maximum isolation effect, water lines and electrical 
conduit should also be isolated. Wall sleeves and rubber 
isolated piping hangers can be used to reduce the sound 
transmitted through water piping. To reduce the sound 
transmitted through electrical conduit, use fl exible 
electrical conduit.

Local codes on sound emissions should always be 
considered. Since the environment in which a sound 
source is located affects sound pressure, unit placement 
must be carefully evaluated. Sound power levels for 
chillers are available on request.

Servicing

Adequate clearance for evaporator and compressor 
servicing should be provided. Recommended minimum 
space envelopes for servicing are located in the 
dimensional data section and can serve as a guideline 
for providing adequate clearance. The minimum space 
envelopes also allow for control panel door swing 
and routine maintenance requirements. Local code 
requirements may take precedence.

Unit Location

General

Unobstructed fl ow of condenser air is essential to 
maintain chiller capacity and operating effi ciency. When 
determining unit placement, careful consideration 
must be given to assure a suffi cient fl ow of air across 
the condenser heat transfer surface. Two detrimental 
conditions are possible and must be avoided: warm air 
recirculation and coil starvation. Air recirculation occurs 
when discharge air from the condenser fans is recycled 
back to the condenser coil inlet. Coil starvation occurs 
when free airfl ow to the condenser is restricted.

Condenser coils and fan discharge must be kept free of 
snow or other obstructions to permit adequate airfl ow 
for satisfactory unit operation. Debris, trash, supplies, 
etc., should not be allowed to accumulate in the vicinity 
of the air-cooled chiller. Supply air movement may draw 
debris into the condenser coil, blocking spaces between 
coil fi ns and causing coil starvation.

Both warm air recirculation and coil starvation cause 
reductions in unit effi ciency and capacity because of 
the higher head pressures associated with them. The 
air-cooled Conquest chiller offers an advantage over 
competitive equipment in these situations. Operation is 
minimally affected in many restricted air fl ow situations 
due to its advanced chiller controller.

Microprocessor which has the ability to understand the 
operating environment of the chiller and adapt to it by 
fi rst optimizing its performance and then staying on 
line through abnormal conditions. For example, high 
ambient temperatures combined with a restricted air 
fl ow situation will generally not cause the air-cooled 
model CGAX chiller to shut down. Other chillers would 
typically shut down on a high pressure nuisance cut-out 
in these conditions.

Cross winds, those perpendicular to the condenser, tend 
to aid effi cient operation in warmer ambient conditions. 
However, they tend to be detrimental to operation 
in lower ambients due to the accompanying loss of 
adequate head pressure. Special consideration should 
be given to low ambient units. As a result, it is advisable 
to protect air-cooled chillers from continuous direct 
winds exceeding 4.5 m/s in low ambient conditions.

Chiled water piping 
should be supported.

Isolators

Flexible electrical 
conduit

Concrete base

Isolators

Piping isolation

Summary of Contents for CGAX/CXAX

Page 1: ...CG PRC026C GB Conquest air cooled chillers and heat pumps Scroll compressor Model CGAX CXAX 42 160 kW...

Page 2: ...ad efficiency ratio SCOP is compliant with Ecodesign directive Acoustic Package Two acoustical package options are available Standard Noise SN with an average sound power of Lw 86 dB A Low Noise LN fo...

Page 3: ...atures and Benefits 4 Application Considerations 7 Unit Placement 10 Model Number Description 12 General Data 14 Dimensional Data 30 Electrical Data 33 Hydraulic Data 37 Sound Data 40 Typical Unit Sch...

Page 4: ...eight Orbiting Scroll Figure 1 Scroll compressor Chiller controller The Conquest chiller is equipped with the new generation of chiller control systems providing improved control capabilities and inte...

Page 5: ...t spray test according to ISO 9227 Electronic Expansion Valve Electronic expansion valve enables tight chilled water temperature control and low superheat resulting in more efficient full load and par...

Page 6: ...ce Water connections are extended up to the edge of the unit for easy connection with system water piping Optional pump package is designed for easy maintenance and service on site Pressure transducer...

Page 7: ...the tabulated values will result in laminar flow causing freeze up problems scaling stratification and poor control The maximum evaporator water flow rate is also given Flow rates exceeding those lis...

Page 8: ...nt system design parameter because it provides for stable chilled water temperature control and helps limit unacceptable short cycling of chiller compressors The Conquest Air Cooled chiller s temperat...

Page 9: ...n calculating the minimum volume necessary for proper Scroll Compressors Chillers operation are given here through a simplified formula which does not take in account variations on chiller efficiency...

Page 10: ...ing and routine maintenance requirements Local code requirements may take precedence Unit Location General Unobstructed flow of condenser air is essential to maintain chiller capacity and operating ef...

Page 11: ...single unit air cooled chiller clearances will generally prove to be adequate Walled Enclosure Installations When the unit is placed in an enclosure or small depression the top of the surrounding wal...

Page 12: ...eze protection 2 With freeze protection by heaters 3 With freeze protection by pump activation Digit 19 20 Open for future options Digit 21 Evaporator Application A Comfort application 5 C 20 C B Proc...

Page 13: ...t 38 Open digit for future options Digit 39 Installation Accessories 1 None 4 Neoprene pads Digit 40 Open digit for future options Digit 41 Acoustical options 2 High External Static Pressure 3 Standar...

Page 14: ...12375 13827 Airflow per Fan HESP Option 100Pa m3 h 13753 13718 12248 12231 12211 12193 13727 Motor RPM rpm 686 686 686 686 686 686 686 Motor RPM HESP Option 100Pa rpm 915 915 915 915 915 915 915 Parti...

Page 15: ...6 12249 12233 12447 12205 Motor RPM rpm 686 686 686 686 686 686 686 Motor RPM HESP Option 100Pa rpm 915 915 915 915 915 915 915 Partial Heat recovery PHR option Heat Exchanger Type Stainless steel Cop...

Page 16: ...w per Fan m3 h 13788 13828 12362 12362 12370 12375 13827 Airflow per Fan HESP Option 100Pa m3 h 13753 13718 12248 12231 12211 12193 13727 Motor RPM rpm 686 686 686 686 686 686 686 Motor RPM HESP Optio...

Page 17: ...Fan m3 h 14690 13676 14687 12358 12363 12592 12374 Airflow per Fan HESP Option 100Pa m3 h 14660 13595 14686 12249 12233 12447 12205 Motor RPM rpm 686 686 686 686 686 686 686 Motor RPM HESP Option 100...

Page 18: ...rpm 150 686 RPM Partial Heat recovery PHR option Heat Exchanger Type Stainless steel Copper Brazed plate Heat exchanger Heat Exchanger Model B3 014 14 4 5M B3 014 14 4 5M B3 014 14 4 5M B3 014 14 4 5...

Page 19: ...686 RPM Partial Heat recovery PHR option Heat Exchanger Type Stainless steel Copper Brazed plate Heat exchanger Heat Exchanger Model B3 027 20 4 5L B3 027 20 4 5L 2xB3 014 14 4 5M 2xB3 014 14 4 5M 2x...

Page 20: ...2362 12362 12370 12375 13827 Motor RPM rpm 150 686 RPM Partial Heat recovery PHR option Heat Exchanger Type Stainless steel Copper Brazed plate Heat exchanger Heat Exchanger Model B3 014 14 4 5M B3 01...

Page 21: ...12358 12363 12592 12374 Motor RPM rpm 150 686 RPM Partial Heat recovery PHR option Heat Exchanger Type Stainless steel Copper Brazed plate Heat exchanger Heat Exchanger Model B3 027 20 4 5L B3 027 20...

Page 22: ...2 96 2 96 3 46 5 93 Condenser Fan Quantity 1 1 2 2 2 2 2 Diameter mm 800 Fan motor Type Propeller fan Fixed speed AC motor Variable speed EC motor HESP MAX SPEED Airflow per Fan m3 h 14949 14960 14966...

Page 23: ...96 3 46 Condenser Fan Quantity 3 3 2 4 4 4 4 Diameter mm 800 Fan motor Type Propeller fan Fixed speed AC motor Variable speed EC motor HESP MAX SPEED Airflow per Fan m3 h 13823 13828 14960 14964 12725...

Page 24: ...le speed EC motor Airflow per Fan m3 h 14949 14960 14966 12721 12726 13352 14959 Airflow per Fan HESP Option 100Pa m3 h 15048 15018 14972 12622 12608 13258 15019 Power per Motor kW 0 89 1 95 Rated Amp...

Page 25: ...tor Airflow per Fan m3 h 13823 13828 14960 14964 12725 12725 13351 Airflow per Fan HESP Option 100Pa m3 h 13806 13786 15015 14980 12626 12611 13261 Power per Motor kW 0 89 1 95 Rated Amps per Motor A...

Page 26: ...n Variable speed EC motor HESP MAX SPEED Airflow per Fan m3 h 14949 14960 14966 12721 12726 13352 14959 Power per Motor kW 1 95 1 95 Rated Amps per Motor A 3 3 Motor RPM rpm 150 686 RPM Partial Heat r...

Page 27: ...peed EC motor HESP MAX SPEED Airflow per Fan m3 h 13823 13828 14960 14964 12725 12725 13351 Power per Motor kW 1 95 1 95 Rated Amps per Motor A 3 3 Motor RPM rpm 150 686 RPM Partial Heat recovery PHR...

Page 28: ...tity of coil 1 1 1 1 1 1 2 Face area per circuit m 2 96 2 96 2 96 2 96 2 96 3 46 5 93 Condenser Fan Quantity 1 1 2 2 2 2 2 Diameter mm 800 Fan motor Type Propeller fan Variable speed EC motor Airflow...

Page 29: ...luminum fins copper tubes heat exchanger Quantity of coil 2 2 2 2 2 2 2 Face area per circuit m 5 93 5 93 2 96 2 96 2 96 2 96 3 46 Condenser Fan Quantity 3 3 2 4 4 4 4 Diameter mm 800 Fan motor Type P...

Page 30: ...1947 2277 2 60 3mm VICTAULIC G 1 1 4 33x42 1 2 3 4 A 6 5 1 2 4 3 1 2 3 4 DETAIL A 1 2 3 4 1 2 3 5 5 1 1 2 3 4 6 2 3 4 5 Evaporator water inlet connection Evaporator water outlet connection Partial hea...

Page 31: ...9 1417 H2 971 875 239 1747 H4 330 875 175 569 1000 1000 70 131 792 723 723 702 792 723 1032 1122 G 1 1 4 33x42 H2 H4 CGAX 036 045 CXAX 036 045 SN 1524 1854 LN 1747 2077 HESP 2 60 3mm VICTAULIC 3 OD 76...

Page 32: ...175 642 1000 1000 70 1000 1000 70 131 222 312 222 552 727 727 727 70 2327 HESP HESP G 1 1 4 33x42 H1 H2 H3 H4 CGAX 035 060 CXAX 035 052 SN 1417 1524 1747 1854 LN 1747 2077 CXAX 060 SN 1617 1724 1947 2...

Page 33: ...3 5 180 3 0 88 CGAX CXAX 060 SE SA SN or LN 74 0 127 6 253 1 191 1 0 85 Table 10 CGAX CXAX SE LA SN or LN Electrical Characteristics Unit Type Base unit amps at 400V 3Ph 50Hz Max Power input kW Max Am...

Page 34: ...4 0 90 CGAX CXAX 060 HE or HESP 78 2 130 7 256 2 194 2 0 87 HE High Efficiency HESP High External Static Pressure Table 12 CGAX CXAX Compressor electrical data Unit Type Compressor Circuit 1 Circuit 2...

Page 35: ...GAX CXAX 052 SE SA 0 89 0 89 2 2 2 2 0 89 0 89 2 2 2 2 CGAX CXAX 060 SE SA 0 89 0 89 2 2 2 2 0 89 0 89 2 2 2 2 Table 14 CGAX CXAX SE LA Condenser fans Electrical Data Unit Type Condenser fan Circuit 1...

Page 36: ...option Pump package Heaters Discon nect switch Power Cable cross section Single Twin pump Standard head pressure Single Twin pump High head pressure Freeze protection Without pump package Freeze prot...

Page 37: ...250 0 5 10 15 20 25 30 35 40 45 015 017 020 023 026 030 036 039 045 035 040 046 052 060 50 0 50 100 150 200 250 0 5 10 15 20 25 30 35 40 45 CGAX Unit without pump package Pressure drop CGAX Single Dua...

Page 38: ...200 250 0 5 10 15 20 25 30 35 40 45 015 017 020 023 026 030 036 039 045 040 035 046 052 060 0 50 100 150 200 250 0 5 10 15 20 25 30 35 40 45 CXAX Unit without pump package Pressure drop CXAX Single Tw...

Page 39: ...CGAX 045 10 8 3 0 32 5 9 0 CGAX 035 8 4 2 3 25 3 7 0 CGAX 040 10 0 2 8 30 1 8 4 CGAX 046 11 2 3 1 33 5 9 3 CGAX 052 12 6 3 5 37 8 10 5 CGAX 060 14 1 3 9 42 4 11 8 CXAX 015 3 8 1 0 11 3 3 1 CXAX 017 4...

Page 40: ...GAX 026 LN 68 dB 80 dB 75 dB 75 dB 75 dB 71 dB 62 dB 58 dB 79 dBA CGAX 030 LN 66 dB 80 dB 76 dB 77 dB 75 dB 73 dB 65 dB 56 dB 80 dBA CGAX 036 LN 70 dB 84 dB 75 dB 74 dB 76 dB 72 dB 61 dB 57 dB 79 dBA...

Page 41: ...dB 39 dB 31 dB 55 dBA CGAX 026 SN 36 dB 58 dB 54 dB 51 dB 51 dB 46 dB 38 dB 32 dB 55 dBA CGAX 030 SN 36 dB 58 dB 54 dB 52 dB 51 dB 48 dB 42 dB 30 dB 55 dBA CGAX 036 SN 37 dB 53 dB 51 dB 49 dB 50 dB 4...

Page 42: ...7 dB 54 dB 54 dB 49 dB 42 dB 33 dB 58 dBA CXAX 052 SN 38 dB 60 dB 57 dB 54 dB 54 dB 49 dB 41 dB 34 dB 57 dBA CXAX 060 SN 38 dB 60 dB 57 dB 55 dB 53 dB 50 dB 44 dB 32 dB 58 dBA CXAX 015 LN 47 dB 54 dB...

Page 43: ...HESP 75 dB 92 dB 92 dB 88 dB 87 dB 83 dB 76 dB 71 dB 92 dBA CGAX 052 HESP 69 dB 92 dB 92 dB 88 dB 87 dB 82 dB 76 dB 72 dB 92 dBA CGAX 060 HESP 69 dB 92 dB 92 dB 89 dB 87 dB 83 dB 77 dB 71 dB 92 dBA C...

Page 44: ...B 61 dB 57 dB 56 dB 52 dB 45 dB 40 dB 60 dBA CGAX 052 HESP 38 dB 61 dB 61 dB 57 dB 56 dB 51 dB 45 dB 41 dB 60 dBA CGAX 060 HESP 38 dB 61 dB 60 dB 58 dB 56 dB 52 dB 46 dB 40 dB 60 dBA CXAX 015 HESP 45...

Page 45: ...Water Strainer 5 Valve for pressure point 6 Expansion tank 7 Water pressure point 8 Brazed Plate Heat Exchanger 10 Manual air bleed 11 Drain valve 12 Optional Freeze protection 13 Optional buffer tank...

Page 46: ...CG PRC026C GB 46 Typical Unit Schematics Figure 11 Refrigerant Chart Cooling only Units...

Page 47: ...CG PRC026C GB 47 Typical Unit Schematics Figure 12 Refrigerant Chart Heat Pump Units...

Page 48: ...either with a control activated heater either with a pump activation sequence whenever the ambient temperature will be below 3 C It has only one entering and only one leaving water connection Chiller...

Page 49: ...ed cell foam of 13mm with antifreezing protection Buffer tank will fit into the chiller to minimize the system footprint Chiller Control System CH535 Chilled water temperature control is fulfilled thr...

Page 50: ...o ensure that chiller DT stays constant Entering and leaving temperatures at the evaporator will be measured directly by the chiller controller through the factory supplied sensor A DT setpoint will b...

Page 51: ...CG PRC026C GB 51 Notes...

Page 52: ...ed controls and HVAC systems comprehensive building services and parts For more information visit www Trane com Trane has a policy of continuous product and product data improvement and reserves the r...

Reviews: