background image

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE 
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” 
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY 
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD 
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate 
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable 
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an 
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license 
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you 
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these 
resources.

TI’s products are provided subject to 

TI’s Terms of Sale

 or other applicable terms available either on 

ti.com

 or provided in conjunction with 

such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for 
TI products.

TI objects to and rejects any additional or different terms you may have proposed. 

IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 202

2

, Texas Instruments Incorporated

Summary of Contents for TPS53126EVM-600

Page 1: ...bly Drawings and Layout 15 9 Bill of Materials 18 10 Revision History 19 List of Figures Figure 3 1 TPS53126EVM 600 Schematic 5 Figure 4 1 Tip and Barrel Measurement for Output Voltage Ripple 7 Figure...

Page 2: ...Points Description 6 Table 9 1 TPS53126EVM 600 Bill of Materials 18 Trademarks D CAP2 is a trademark of Texas Instruments All trademarks are the property of their respective owners Trademarks www ti...

Page 3: ...ers in evaluating the performance of the TPS53126 controller in their applications 1 2 Applications Digital television Set top box DSL and cable modems Cost sensitive digital consumer products 1 3 Fea...

Page 4: ...8 V to 22 V 0 4 A VOUT2 Output Voltage 2 VIN 12 V IOUT2 2 A 1 80 V Line Regulation VIN 8 V to 22 V 1 Load Regulation IOUT2 0 A to 4 A 1 VOUT2_rip Output Voltage Ripple VIN 12 V IOUT2 4 A 30 mVpp IOUT...

Page 5: ...Specific Values Figure 3 1 TPS53126EVM 600 Schematic www ti com Schematic SLVU435A FEBRUARY 2011 REVISED JANUARY 2022 Submit Document Feedback TPS53126 Buck Controller Evaluation Module User s Guide...

Page 6: ...SW1 Monitor Switching Node for Channel 1 Section 4 3 4 TP6 GND Ground for Channel 2 Output Voltage Section 4 3 3 TP7 VOUT2 Monitor Output Voltage for Channel 2 Section 4 3 3 TP8 VOUT1 Monitor Output V...

Page 7: ...ique shown in Figure 4 1 4 3 4 Switching Node Monitoring TP3 TP5 and TP11 TPS53126EVM 600 provides two test points for measuring the switching node waveform voltages TP5 monitors the switching node of...

Page 8: ...Adc The minimum recommended wire size is AWG 16 with the total length of wire less than 2 feet 1 foot input 1 foot return J1 to LOAD1 and J2 to LOAD2 The connection between J1 and LOAD1 and J2 and LOA...

Page 9: ...AN Figure 5 1 TPS53126EVM 600 Recommended Test Setup www ti com Test Setup SLVU435A FEBRUARY 2011 REVISED JANUARY 2022 Submit Document Feedback TPS53126 Buck Controller Evaluation Module User s Guide...

Page 10: ...ge output voltage and input current from V1 V2 V3 and A1 respectively 6 Shut down the TPS53126EVM 600 per Section 6 4 6 3 Output Ripple Voltage Measurement Procedure 1 Set up the TPS53126EVM 600 per S...

Page 11: ...5 2 2 5 3 3 5 4 4 5 I Load Current A LOAD V 8 V IN V 12 V IN V 22 V IN b F 700 kHz SW Figure 7 1 Efficiency vs Load VIN 8 V 22 V VOUT1 1 05 V IOUT1 0 A 4 A 95 90 85 80 75 70 65 60 h Efficiency 0 0 5 1...

Page 12: ...A a F 350 kHz SW 1 84 1 83 1 82 1 81 1 8 1 79 1 78 1 77 1 76 V Output Voltage V OUT 0 0 5 1 1 5 2 2 5 3 3 5 4 4 5 I Load Current A LOAD V 22 V IN V 8 V IN V 12 V IN 1 84 1 83 1 82 1 81 1 8 1 79 1 78 1...

Page 13: ...3126EVM 600 Output Ripple Test condition Vin 12 V Vo 2 1 8 4A 350 kHz Figure 7 6 Output Voltage Ripple VIN 12 V VOUT2 1 8 V IOUT2 4 A FSW 350 kHz www ti com Performance Data and Typical Characteristic...

Page 14: ...126EVM 600 Switch Node Test condition Vin 12 V Vo 2 1 8 V 4A 350 kHz Figure 7 8 Switching Waveform VIN 12 V VOUT2 1 08 V IOUT2 4 A FSW 350 kHz Performance Data and Typical Characteristic Curves www ti...

Page 15: ...evaluate the TPS53126 control integrated circuit in a practical application Moving components to both sides of the PCB or using additional internal layers can offer additional size reduction for spac...

Page 16: ...Bottom Layer EVM Assembly Drawings and Layout www ti com 16 TPS53126 Buck Controller Evaluation Module User s Guide SLVU435A FEBRUARY 2011 REVISED JANUARY 2022 Submit Document Feedback Copyright 2022...

Page 17: ...6 Internal Layer 2 www ti com EVM Assembly Drawings and Layout SLVU435A FEBRUARY 2011 REVISED JANUARY 2022 Submit Document Feedback TPS53126 Buck Controller Evaluation Module User s Guide 17 Copyright...

Page 18: ...Q2 Q3 Q4 CSD17507Q5A MOSFET N Chan 30V 65A 11 8m QFN 8 POWER CSD17507Q5A TI 1 R1 1 40k Resistor Chip 1 16W 1 0603 Std Std 2 R11 R12 5 11 Resistor Chip 1 16W 1 0603 Std Std 1 R13 332 Resistor Chip 1 1...

Page 19: ...ision A January 2022 Page Updated the numbering format for tables figures and cross references throughout the document 3 Updated the user s guide title 3 www ti com Revision History SLVU435A FEBRUARY...

Page 20: ...ther than TI b the nonconformity resulted from User s design specifications or instructions for such EVMs or improper system design or c User has not paid on time Testing and other quality control tec...

Page 21: ...These limits are designed to provide reasonable protection against harmful interference in a residential installation This equipment generates uses and can radiate radio frequency energy and if not in...

Page 22: ...instructions set forth by Radio Law of Japan which includes but is not limited to the instructions below with respect to EVMs which for the avoidance of doubt are stated strictly for convenience and s...

Page 23: ...any interfaces electronic and or mechanical between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electr...

Page 24: ...R DAMAGES ARE CLAIMED THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT 9 Return Policy Except as otherwise provided TI does not offer any refunds returns or exchanges Furthe...

Page 25: ...change without notice TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource Other reproduction and display of thes...

Reviews: