Texas Instruments DAC8728EVM User Manual Download Page 4

Digital Interface

www.ti.com

The analog interface is populated on the top and the bottom of the evaluation board. All of the output pins
are routed directly from the DAC8728 to the J5 connector. Additionally, they can be routed through an
OPA277 buffer circuit using JP1 and JP2. The output of the buffer circuit is routed to TP3 and TP4.

The output of the DAC8728 internal offset DAC is routed to test points TP10 and TP17.

The DAC8728EVM has two external reference voltage options. J2.2 controls the external reference
voltage for the REF-A input. J2.1 controls the reference for the REF-B input. When an external reference
is used, jumpers JP4-JP7 must be configured properly. Test points TP8 and TP7 can be used to verify
that the jumpers are configured properly and the correct reference voltage is applied to the DAC.

The V

MON

output allows the user to relay any of the DAC outputs, as well as A

IN

-0 or A

IN

-1, to a single pin.

V

MON

is routed to test point TP9 and is connected to a 0.1

m

F capacitor.

3

Digital Interface

The DAC8728EVM is designed for easy interfacing to multiple control platforms. To achieve this host
processor flexibility, an unconventional way of controlling this EVM had to be developed. Therefore, the
16-bit data bus from the host processor is shared between the 16-bit data bus and the 5-bit A0–A4
address bus on the DAC8728. This configuration is accomplished with the use of the SN74LVC374 8-bit
Rising-Edge Triggered Latch (U11 on EVM). As a result, every write or read operation to the DAC8728 is
a two-step process. The first step writes the appropriate A0–A4 address to the first five bits of the data bus
and latches it into the SN74LVC374; this process sets up the appropriate address for the DAC8728. The
second step writes to (or reads from) the selected address data with all 16 bits of the parallel data bus.

The four address bits from the host processor are used to control the SN74LVC139, a two-channel,
two-to-four line decoder/demultiplexer (U7 on EVM). This device is used to create eight control bits from
the processor address that are used around the board to control various signals such as the LATCH input
to the SN74LVC374 and the DC_CS (daughter card chip select). For every write or read operation, the
appropriate signals must be selected; therefore, specific address combinations are used to achieve
different results. These combinations are explored further in the next section.

Jumper options are provided on the board to allow direct hardware control over the digital control pins:
LDAC, CLR, RST, RSTSEL, and USB/BTC. Jumpers JP3, JP9 to JP11, JP13, and JP17 can be set to
allow the outputs of the SN74LVC139 to control the LATCH_CTRL, R/W, CLR, RST, DC_CS, and
LDAC_CTRL signals on the EVM.

Onboard digital logic is used to control the DAC8728 CS pin. The WE and RE pins and the DC_CS output
of the SN74LVC139 (U7) are used to derive the appropriate DAC8728 CS signal. JP10 allows the user to
choose between three addresses to control the DC_CS signal on the EVM. Having this ability to select the
address of the DAC8728 enables the possibility of stacking other EVM boards on top of the
DAC8728EVM.

Jumpers JP17, JP9, and JP3 control the LDAC, RST, and CLR pins, respectively. The default state of all
these jumpers is a shunt across pins 1 and 2 of the header. This shunt routes the software-controlled
outputs from the SN74LVC139 (U7) to the DAC8728. By removing the shunts on these jumpers, the
default hardware state for these pins is selected: high for CLR and RST, and low for LDAC. By shunting
pins 2 and 3 of these headers, the opposite hardware states for these pins are selected. Alternatively, with
the jumpers removed, the user can apply external signals to pin 2 of these jumpers to control the signals
via an external source.

Jumper JP11 and JP13 control the USB/BTC and RSTSEL pins on the DAC8728. Applying a shunt across
these jumpers ties the respective pin to GND. By removing the shunt, the pin is connected to IOV

DD

through a pull-up resistor.

4

DAC8728EVM

SBAU161 – February 2010

Submit Documentation Feedback

Copyright © 2010, Texas Instruments Incorporated

Summary of Contents for DAC8728EVM

Page 1: ...e circuit descriptions schematic diagrams and bills of material are included in this document The following related documents are available through the Texas Instruments web site at www ti com Related...

Page 2: ...pply Configuration 15 List of Tables 1 J5 Analog Output Connector Pinout 3 2 J2 Parallel Interface Pins 5 3 External Logic Behavior 6 4 SN74LVC374 Control 7 5 LDAC Control 7 6 A0 and A1 Address Combin...

Page 3: ...ety of processors Consequently access to the parallel interface is achieved through external logic controlled by the host processor parallel interface Throughout this document the acronym EVM and the...

Page 4: ...r line decoder demultiplexer U7 on EVM This device is used to create eight control bits from the processor address that are used around the board to control various signals such as the LATCH input to...

Page 5: ...mpletes DSP Write Strobe Signal is cycled low to J2 3 WE high within the CE strobe when a parallel bus write occurs DSP Read Strobe Signal is cycled low to J2 5 RE high within the CE strobe when a par...

Page 6: ...nections to the SN74LVC139 Figure 1 Parallel Control Header and SN74LVC139 4 1 Required External Logic Most of TI s host processors do not have a hardware chip select that meets the timing requirement...

Page 7: ...374 Control LATCH_CTRL WE LATCH 0 0 0 0 1 1 1 0 1 1 1 1 The final piece of external logic gives the EVM user the ability to control the LDAC signal from both the processor I O pins and the SN74LVC139...

Page 8: ...on the 1Y0 output of the SN74LVC139 U7 The LATCH_CTRL signal is logic ORed with the WE signal to create the LATCH signal that is used to control the CLK input to the SN74LVC374 on the EVM During the...

Page 9: ..._CS0 0 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 Table 8 Commonly Used Address Combinations A3 to A0 Hex Open1 LATCH_CTRL 0x0 DC_CS R W 0x5 LDAC LATCH_CTRL 0xC DC_CS Open2 0x7 4 10 BUSY Signal The...

Page 10: ...d TSM 116 01 T DV to provide a convenient 16 pin dual row header socket combination at J6 This header socket combination provides access to the parallel data pins of the DAC8728 and the inputs to the...

Page 11: ...ed from VA a 8 to 36V analog supply range When the DAC8728 is run in bipolar mode AVSS and AVDD are required AVSS can range from 4 5V to 18V and AVDD can range from 4 5V to 18V The DAC8728 AVDD VA sup...

Page 12: ...pers JP1 and JP2 allow the user to route the DAC outputs to the input of a voltage follower amplifier that drives an RC low pass filter The capacitor is not installed and a 0 resistor connects the op...

Page 13: ...ht binary Sets the DAC8728 to unipolar operation by routing JP14 2 3 the AVSS pin to AGND Sets the DVDD input to the DAC8728 to 3 3V from JP15 1 2 pin 10 on the J4 header Routes the OFFSET_B pin direc...

Page 14: ...ET_B pins must be shorted directly to GND for unipolar single supply operation Table 11 Unipolar Single Supply Configuration Jumper Position JP3 JP4 JP5 JP6 JP7 JP9 1 2 JP15 JP17 JP19 JP20 JP14 2 3 JP...

Page 15: ...dual supply operation Table 12 Bipolar Dual Supply Configuration Jumper Position JP3 JP4 JP5 JP6 JP7 JP9 1 2 JP14 JP15 JP17 JP19 JP20 JP1 JP2 JP8 JP13 JP16 JP18 Open JP11 Closed JP10 3 4 Figure 6 Bip...

Page 16: ...r Ceramic 10mF 50V X7S 1210 Taiyo Yuden UMK325C7106MM T C27 11 3 J1 J3 J5 Top 20 pin header Samtec TSM 110 01 T DV 12 3 J1 J3 J5 Bottom 20 pin socket Samtec SSW 110 22 S D VS 13 1 J2 TERMINAL BLOCK 3...

Page 17: ...Op Amp 8 SOP TI OPA227UA 35 1 U4 Dual Precision Op Amp 8 SOP TI OPA2277U 36 2 U5 U6 Little Logic OR Gate SOT23 5 TI SN74LVC1G32DBV 37 1 U7 Dual 2 4 Line Decoder 16 SOP TI SN74LVC139AD 38 2 U8 U12 Litt...

Page 18: ...4 2B3 16 2B4 17 2B5 19 2B6 20 2B7 22 2B8 23 1A1 47 1A2 46 1A3 44 1A4 43 1A5 41 1A6 40 1A7 38 1A8 37 2A1 36 2A2 35 2A3 33 2A4 32 2A5 30 2A6 29 2A7 27 2A8 26 U10 SN74LVC16245A IOVDD R8 15k IOVDD EVM_A0...

Page 19: ...oduct This notice contains important safety information about temperatures and voltages For additional information on TI s environmental and or safety programs please contact the TI application engine...

Page 20: ...h statements TI products are not authorized for use in safety critical applications such as life support where a failure of the TI product would reasonably be expected to cause severe personal injury...

Page 21: ...ltera Analog Devices Intersil Interpoint Microsemi Aeroflex Peregrine Syfer Eurofarad Texas Instrument Miteq Cobham E2V MA COM Hittite Mini Circuits General Dynamics 8 812 309 58 32 8 812 320 02 42 or...

Reviews: