EN
3
DSMX
®
Spektrum launched the 2.4GHz RC revolution with its DSM2 technology. Since
then millions of hobbyists the world over have come to embrace 2.4 as the way
to fly. Spektrum leads the way yet again with DSMX; the world’s first wideband,
frequency-agile 2.4GHz signal protocol.
How Does DSMX Work?
It’s a crowded 2.4GHz world out there and every 2.4GHz system faces the
same challenges. DSMX better equips you for these challenges by combining
the superior data capacity and interference resistance of a wideband signal
(like that used in DSM2) with the agility of frequency shifts.
Compared to the wideband signal of DSMX, the narrow band signal of other
frequency hopping 2.4 transmitters is more likely to suffer data loss in the
event of on-channel interference. Think of it as a river vs. a stream. It takes
more interference to dam a river than it does a stream.
As more and more 2.4 transmitters vie for the same number of available
channels, there is more interference and more of a risk for data loss. By
adding the agility of frequency shifts to the superior interference resistance of
a wideband signal, DSMX is far less likely to suffer significant data loss from
on-channel interference. The result is quicker connection times and superior
response in even the most crowded 2.4GHz environment.
DSMX Operational Differences
DSMX transmitters and receivers function nearly identically to Spektrum
DSM2 systems. Binding, setting the failsafe, recording flight log data, as
well as general use of the system is no different than using any current
Spektrum system.
Following are the operational differences:
Brownout Detection- Not Available on DSMX Receivers
DSM2 receivers feature Brownout Detection that flashes the receiver’s LED if
a power interruption occurs. While DSMX receivers have QuickConnect and
recover instantly from a power interruption, the architecture of DSMX prevents
Brownout Detection when operating in DSMX mode.
Flight Log Recording- Fades Higher than DSM2
Note that DSMX hops through the band while DSM2 finds two quiet channels
and remains on those channels. Consequently because DSMX operates on
quiet and noisy channels, it’s common to have more Antenna Fades than when
using DSM2, when used in busy 2.4GHz environments. When taking flight log
data readings, the Frames and Hold Data are important and should be used
a reference while Fades are insignificant due to the nature of frequency agile
systems. A 10-minute flight will typically result in less than 50 Frame Losses
and no Holds.
Summary of Contents for AR9010
Page 1: ...1 AR9010 User Guide...
Page 71: ...IT 71...