background image

S i 5 3 6 5 / 6 6 - E V B   S i 5 3 6 7 / 6 8 - E V B   S i 5 3 6 9 - E V B

Rev. 0.6

5

5.3.  Si536x Input and Output Clocks

The Si536x has four differential inputs that are ac terminated to 50

 and then ac coupled to the part. Single ended

operation can be implemented by simply not connecting to one of the two of the differential pairs. When operating
with clock inputs of 1 MHz or less in frequency, the appropriate dc blocking capacitors (C58, C61, C47, C50, C53,
C55, C42 and C45) located on the bottom of the board should be replaced with zero ohm resistors. The reason for
this is that the capacitive reactance of the ac coupling capacitors becomes significant at low frequencies. It is also
important that the CKIN signal meet the minumum rise time of 11 ns (CKNtrf) even though the input frequency is
low.

The four clock outputs are all differential, ac coupled and configured for driving 50

 transmission lines. 

When

using single ended outputs, it is important that the unused half of the output be terminated

. Given that the

Frame Sync signal can have a duty cycle that is far from 50%, the Frame Sync outputs are dc coupled. If the
Frame Sync or other clock ouputs signals are configured for CMOS, then the two outputs are not complements of
one another and should be wired in parallel so that the output drive current is doubled. To evaluate CMOS level
Frame Sync outputs, a 0

 resistor should be installed at R19. Note that for the MCU controlled parts that support

Frame Sync mode (Si5367 and Si5368), the Frame Sync output signal format can be configured independently of
the other four outputs.

Two jumpers are provided to assist in monitoring the Si536x power. When R36 is removed, J25 can be used to
measure the device current. J18 can be used at any time to monitor the supply voltage at the device.

The Si5366, Si5368, and Si5369 require that an external reference clock be provided to enable the devices to
operate as narrowband jitter attenuators with loop bandwidths as low as 60 Hz (as low as 4 Hz for the Si5369). The
external reference clock can be either a crystal, a stand-alone oscillator or some other clock source. The range of
acceptable reference frequencies is described in the Any-Frequency Precision Clocks Family Reference Manual
(Si53xx-RM). The EVB's are shipped with a 3rd overtone 114.285 MHz crystal that is used in the majority of
applications. J1 and J2 are used when the Si536x is to be configured in narrowband mode with an external
reference oscillator (i.e., without using the 114.285 MHz crystal). 

The RATE pins should also be configured for the desired mode, either through DSPLL

sim

 or using the jumper

plugs at J17 (see Table 7 on page 11).

Table 2 shows how the various components should be configured for the three modes of operation:

For a differential external reference, connect the balanced input signals to J1 and J2. For single-ended operation,
connect the input signal to J1 and disconnect J2.

R51 is provided so that a different termination scheme can be used. If R51 is populated, then remove R52 and R24.

Table 2. Reference Input Mode

Mode

Xtal

1

38.88 MHz Ext 

Ref

2

Wideband

Input 1

NC

3

J1

NC

Input 2

NC

J2

NC

C39

NOPOP

4

install

install

C22

NOPOP

install

NOPOP

R50

NOPOP

NOPOP

install

R28

install

NOPOP

NOPOP

RATE0

M

H

RATE1

M

H

Notes:

1.

Xtal is 114.285 MHz 3rd overtone.

2. 

For external reference frequencies and RATE pin settings, see the 

Any-Frequency Precision Clock Family Reference Manual

.

3. 

NC—no connect.

4. 

NOPOP—do not install this component.

Summary of Contents for Si5365-EVB

Page 1: ...uation board is available to evaluate both devices Likewise the Si5368 can be configured to operate as a Si5367 so the two devices share a single evaluation board The Si5365 66 67 68 69 Any Frequency...

Page 2: ...o that external clock in clock out and status pins can be easily accessed by the user For the MCU controlled devices Si5367 Si5368 and Si5369 the user also has the option of bypassing the MCU and cont...

Page 3: ...ver This must be installed before the EVB is connected to the PC via the USB cable For details see Section 7 EVB Software Installation on page 12 2 Install the Precision Clock EVB Software Assumes tha...

Page 4: ...e by using a narrowband part in wideband mode As such these evaluation boards are only populated with narrowband parts To evaluate Si5365 device operation using the Si5365 66 EVB the RATE 1 0 pins mus...

Page 5: ...wer When R36 is removed J25 can be used to measure the device current J18 can be used at any time to monitor the supply voltage at the device The Si5366 Si5368 and Si5369 require that an external refe...

Page 6: ...an EEPROM that is used to store configuration information for the board The board powers up in free run mode with a configuration that is outlined in Appendix Powerup and Factory Default Settings on p...

Page 7: ...J8 is a twenty pin ribbon header that brings out all of the status outputs from the Si536x Note that some pins are shared and serve as both inputs and outputs depending on how the device is configured...

Page 8: ...and convenient means of determining board status Table 3 LED Status and Description LED Color Label LED Color Label D1 green 3 3 V D2 red LOL D3 green DUT_PWR D4 red C1B D5 red ALRMOUT D6 red C2B D7 y...

Page 9: ...and 7 Figure 4 Connectors Jumper Header Locations J25 assists in measuring the Any Frequency Precision Clock current draw If J25 is to be used R36 should be removed R24 R28 C22 on top R50 R51 R52 C39...

Page 10: ...ister Programmer connect to the Evaluation Board go to Options in the top toolbar and select Switch To External Control Mode To control an Any Frequency part that is on an external target board from t...

Page 11: ...to supply an external single ended or differential reference oscillator Table 6 External Serial Port Connector J22 J38 Pin Comment J22 1 SDA_SDO J22 3 SCL_SCLK J22 5 SDI J22 7 A2_SS J22 9 DUT_RST_B re...

Page 12: ...p so some programs may not be applicable to them Table 8 User Applications Program Description Register Viewer The Register Viewer displays the current register map data in a table format sorted by re...

Page 13: ...1 3 2 J2 SMA_EDGE J2 SMA_EDGE C47 100N C47 100N R59 49 9 R59 49 9 R29 0 ohm R29 0 ohm C33 100N C33 100N C61 100N C61 100N C57 100N C57 100N C51 10NF C51 10NF C43 10NF C43 10NF 1 3 2 J38 SMA_EDGE J38...

Page 14: ..._M13 60 FN15_M14 61 FN15_M15 63 FN15_M16 64 FN16_M5 43 FN16_M6 42 FN16_M11 41 FN16_M12 40 FN16_M13 39 FN1_M3_GSR 99 FN1_M6 97 FN1_M12 96 FN1_M13 95 FN1_M14 94 FN2_M1_GTS2 1 FN2_M3_GTS3 2 FN2_M5_GTS0 3...

Page 15: ...7 15 P4 6 16 P4 5 17 P4 4 18 P4 3 19 P4 2 20 P4 1 21 P4 0 22 C8051 F340 U9 Si8051F340 C8051 F340 U9 Si8051F340 R38 0 ohm R38 0 ohm C5 100N C5 100N R40 1K R40 1K R44 1K R44 1K R4 10k R4 10k 1 2 4 3 SW...

Page 16: ...0x4 1 2 A C D14 Grn A C D14 Grn 1 J24 J24 R66 10k R66 10k C31 33UF C31 33UF 1 2 A C D6 Red A C D6 Red 1 2 A C D13 Red A C D13 Red 1 8 2 7 3 6 4 5 R47 R82x4 R47 R82x4 1 H2 4 H2 4 C30 33UF C30 33UF 1 J1...

Page 17: ...5B 7A 1A 2A 1B 3B 4C 1C 3A 3C 2C 2B 15A 13B 16A 16B 17B 17A 16C 13C 11C 12A 11A 14B 15B 17C 10C 11B 14A 15C 13A 12B 12C 14C 4A 4B 19B 18C 20B 19A 19C 18B 20C 20A 18A J17 20x3_M_HDR_SMT J17 20x3_M_HDR_...

Page 18: ...8 J29 J30 J33 J35 J36 J37 J38 J3 9 J41 SMA_EDGE Johnson 142 0701 801 12 9 J4 J9 J11 J12 J16 J19 J20 J24 J26 Jmpr_1pin 13 1 J6 USB FCI 61729 0010BLF 14 1 J8 20_M_Header_SMT Samtec HTST 110 01 lm dv a 1...

Page 19: ...F340 Silicon Labs C8051F340 GQ 50 1 U10 XC2C128 Xilinx XC2C128 7VQG100I 51 1 X1 for Si5365 66 EVB and Si5367 68 EVB 114 285 MHz TXC 7MA1400014 51 1 X1 for the Si5369 EVB 114 285 MHz 20 ppm NDK EX500A...

Page 20: ...Si5365 66 EVB Si5367 68 EVB Si5369 EVB 20 Rev 0 6 10 Layout Figure 10 Silkscreen Top Figure 11 Layer 1...

Page 21: ...Si5365 66 EVB Si5367 68 EVB Si5369 EVB Rev 0 6 21 Figure 12 Layer 2 Ground Plane Figure 13 Layer 3...

Page 22: ...Si5365 66 EVB Si5367 68 EVB Si5369 EVB 22 Rev 0 6 Figure 14 Layer 4 3 3 V Power Figure 15 Layer 5...

Page 23: ...Si5365 66 EVB Si5367 68 EVB Si5369 EVB Rev 0 6 23 Figure 16 Layer 6 DUT Power Figure 17 Layer 7 Ground Plane...

Page 24: ...Si5365 66 EVB Si5367 68 EVB Si5369 EVB 24 Rev 0 6 Figure 18 Layer 8 Figure 19 Silkscreen Bottom...

Page 25: ...IN1 CKIN2 CKIN3 and CKIN4 For the Si5365 66 EVB the factory jumper settings are as follows For J17 Silkscreen Pin Jumper Comment J17 1B none AUTOSEL J17 2B none Autosel non revert FRQSEL0 J17 3B none...

Page 26: ...t CS0_C3A J14 1B none CS1_C4A J14 2B none INC J14 3B none DEC J14 4B none J14 5B none J14 6B none DBL34 J14 7B none CKOUT3 CKOUT 4 enabled FS_ALIGN J14 8B none no FS alignment FS_SW J14 9B none CKIN3...

Page 27: ...lt Settings on page 25 Revision 0 3 to Revision 0 4 Updated for free run mode Revision 0 4 to Revision 0 5 Added warning about low clock input frequencies to section 5 3 Si536x Input and Output Clocks...

Page 28: ...Si5365 66 EVB Si5367 68 EVB Si5369 EVB 28 Rev 0 6 NOTES...

Page 29: ...h which if it fails can be reasonably expected to result in significant personal injury or death Silicon Laboratories products are generally not intended for military applications Silicon Laboratories...

Reviews: