SGS TS68483A Manual Download Page 18

Table 4

Name

Number

of Bits

Mininmum

Values

Register

Description

Function

DWY

10

1

R9

Number of Display lines per Field

Vertical

Scan

INE

1

R8

Interlace Enable when INE = 1

BKY

5

1

R8

Number of Lines in Vertical Blanking – 2.5

FPY

5

1

R7

Number of Lines in Vertical Front Porch

BPY

8

3

R6

Number of Lines in Vertical Back Porch + 2.5

H

6

19

R6

Number of Double Cycles per Line

Horizontal

Scan

FPX

4

3

R8

Number of Cycles in Horizontal Front Porch

BKX

4

4

R8

Number of Cycles in Horizontal Blanking – 3

DWX

7

3

R7

Number of Cycles of the Display Window

XOR

8

R4

X, Y, and bank logical address in the display
memory of the display viewport upper left corner

Display

Process

YOR

11

R5

DIB

2

R4

MODX

2

R9

Selection of the X Addressing Mode

MC

4

R4

Margin Color

RFD

1

R7

RAM Refresh Disable when RFD = 1

Memory

Time

Sharing

DPD

1

R7

Display Process Disable when DPD = 1

VRE

1

R8

Video RAM Enable When VRE = 1

Note : one cycle = 8 periods of CLK Clock

68483-07.TBL

V. MEMORY ORGANIZATION

V.1 - Introduction
The display memory is logically organized as four
banks of 4-bit planes. Thus a bit address in the
display memory is given by the quadruplet :
- B = bank number, from 0 to 3
- Z = plane number, from 0 to 3
- X = bit address into the plane, from 0 to 2047
- Y = bit address into the plane, from 0 to 2047.

In one memory cycle (8 CLK periods), the controller
can access a memory word. This 32-bit memory
word holds one byte from each plane in a given
bank. In order to address this memory word, the
controller supplies :
- B(0:1) : binary value of the bank number
- X(3:10) : binary value of the word address
- Y(0:10) : binary value of the word address.
Z and X(0:2) are not supplied. They give only a bit
address in a memory word.

V.2 - Memory Cycles
24 pins are dedicated to the memory interface.

- ADM(0:15) : these 16 bidirectional pins are mul-

tiplexed three times during a memory cycle (see
Figure 25) :
TA

: address period. Output of the X(3:11)

and Y(3:11) address

TO

: even data period. The even Z bytes are

either input or output.

T1

: odd data period. The odd Z bytes are

either input or output.

Y(0:2) : three LSB Y address output pins (non-

multiplexed)

B(0:1) : two bank address output pins (non-

multiplexed)

- CYS : Cycle start strobe output (non-multiplexed).

CYS is at CLK/8 frequency. A CYS pulse is deliv-
ered only when a command, display or refresh
cycle is performed.

- CYF(0:1) : Two cycle status outputs (non-multi-

plexed). Four cycle types are defined : Command
Read, Command Write, RAM Refresh, Display
Access.

Because several options may be selected for RAM
refresh and display access by the MODX and VRE
flags (see Video Timing Section), there are more
than four memory cycle types (see Figure 25 and
Table 5).

V.3 - Display Memory Desing Overview

The display memory implementation is application
dependant. The basic parameters are :
- the number of pixels to be displayed Nx.Ny
- the number of bits per pel
- the vertical scanning frequency, which must be

picked in the 40Hz to 80Hz range (non interlaced)
or in the 60Hz to 80Hz range (interlaced).

This yields a rough estimate of the pixel frequency.
When the pixel frequency is in the 15 to 18MHz
range and 4 bits per pixel or least are required, the
on-chip video registers and standard dynamic RAM
components may be used. When higher pixel rates

TS68483A

18/30

Summary of Contents for TS68483A

Page 1: ...OR PEN CONCEPT AND PROGRAMMABLE LINE STYLE FLEXIBLE AREA FILL COMMAND WITH TILING PATTERN VERY FAST BLOCK MOVE OPERATION CHARACTER DRAWING COMMAND ANY SIZE AND FONTS AVAILABLE LARGE FRAME BUFFER ADDR...

Page 2: ...onnected to the WR signal CS I Chip Select This input selects the TS68483 registers for the current bus cycle A low level corresponds to an asserted chip select In multiplexed mode this input is strob...

Page 3: ...Voltage 0 3 7 0 V Vin Input Voltage 0 3 7 0 V TA Operating Temperature Range 0 70 C Tstg Storage Temperature Range 55 150 C PDm Max Power Dissipation 1 5 W 68483 02 TBL With respect to VSS Stresses a...

Page 4: ...CRT monitor The display unit consists of four hardware building blocks an TS68483 advanced graphics controller a display memory dynamic RAM a displaymemoryinterface comprising a fewTTL parts a CRT int...

Page 5: ...lay unit This memory is addressed as four banks of 4 bit plane each BIT PLANE Each bit plane has a maximum capacityof 211 x 211 bits A byte wide organization of each bit plane is required MEMORY ADDRE...

Page 6: ...a given type For example any drawing command may be parame tered for destination mask bit use The command code also defines the command type and its parameters A command is completely defined when a v...

Page 7: ...not specified Xs 0 to 255 a cell dimension DXs DYs a bit plane address Zs When a character is addressed Zs gives the plane number into the bank Bs When an object is ad dressed Zs gives the source mask...

Page 8: ...R22 R23 15 14 13 12 11 10 9 8 7 6 4 5 3 2 1 0 13 bit positive value Bank number Plane number 13 bit positive value Absolute value Absolute value 11 bit positive value 8 bit positive value Absolute va...

Page 9: ...nerally addressed as the frame buffer When short pels are used any bank may hold a frame buffer In thiscase the bankparity selectsthe color nibble used See destination pointer section for bank address...

Page 10: ...he penis a CELL this cell is printed at each active coordinate In the bichrome mode when the cell is a character and in the polychrome mode when the cell is an object For each active coordinates the a...

Page 11: ...the PRINT CHARACTER PRINT OBJECT and LIN EAR commands when the pen is a cell The AREA or ACCESS or LINEAR DOT commands are never scaled The LINEAR PEN command should be used with a scaling factor of...

Page 12: ...DXs DYs SAVE VIEWPORT Xs Ys DXs DYs MODIFY VIEWPORT Xs Ys DXs DYs These commands provide sequential access to a viewport in a frame buffer from the microprocessor data base Data are transferred to fr...

Page 13: ...4 registers A0 selects the low order byte A0 1 or the high order byte A0 0 of the selected register A 6 7 provide the command execution condition The host microprocessor bus may be either 8 or 16 bits...

Page 14: ...D 8 15 TS68483 TS68008 V CS R W DS CC 68483 16 EPS Figure 14 Interface with TS68000 68008MPU 37 26 28 25 29 AD 8 15 AD 0 7 A 1 7 D 0 7 D 8 15 TS68483 8086 ALE CS WR 26 28 25 29 AD 0 7 A 1 7 D 0 7 D 8...

Page 15: ...Word 1 Long Word 1 1 Exec after 4 Bus Cycles 1 Long Word ILLEGAL Notes Word transfer must respect word boundary Long word transfer must respect long word boundary Not available with 8088 MPU type 684...

Page 16: ...d to load the internal video RAM shift register the non displayable lines In one out of nine non displayablelines DWX cyclesare allocatedto the refresh process when it is enabled RFD 0 In Float cycle...

Page 17: ...must be programmed to use external shift register Dummy read IV 3 4 PAN AND TILT The host can tilt or pan the Display Viewport through the frame bufferby modifying YOR or XOR arguments Panning isperfo...

Page 18: ...the bank number X 3 10 binary value of the word address Y 0 10 binary value of the word address Z and X 0 2 are not supplied They give only a bit address in a memory word V 2 Memory Cycles 24 pins are...

Page 19: ...onging to different banks but addressed by the same Z share a given block There is little time constraint if any One block twoZ two bit planes belongingto the same bank share a given block In this cas...

Page 20: ...in bank3 V 3 3 OBJECTS AND CHARACTERS Objects may be located in unused parts of the frame buffer Character generators can be implemented in any plane of any bank They can also be implemented in ROM In...

Page 21: ...rocessors UNMUX MODE Microprocessor Interface Timing A 0 7 D 0 15 AE DS CS R W VCC 5 0V 5 TA TL to TH CL 100pF on D 0 15 Reference levels VIL 0 8V and VIH 2V on all inputs VOL 0 4V and VOH 2 4V on all...

Page 22: ...6 7 8 1 5 3 2 4 A 0 7 AS MPU CS DS R W DATA OUT D 0 15 68483 23 EPS Figure 21 Read Cycle 3 8 1 5 3 2 A 0 7 AS MPU CS DS R W DATA IN D 0 15 10 9 11 12 68483 24 EPS Figure 22 Write Cycle TS68483A 22 30...

Page 23: ...and R W High 150 ns 6 DS Width low read 240 ns 7 R W Width low write 110 ns 8 Data Access Time From DS read 210 ns 9 Data in Set up time from R W Inactive write 150 ns 10 DS Inactive to High Impedance...

Page 24: ...3 3 16 5 8 10 14 12 A D OUT AE CS DS R W A D 6 68483 25 EPS Figure 23 Read Cycle 1 2 4 3 3 A AE CS DS R W A D 17 5 13 15 A DIN DIN 18 9 11 11 7 FAST WRITE 68483 26 EPS Figure 24 Write Cycle TS68483A...

Page 25: ...LK 10 ns 6 Input Data Hold Time from CLK read cycle 6 ns 7 Input Data Set up Time from CLK read cycle 10 ns 8 Input Data HI Z Time from CLK TCLK ns Note All timing is referenced to the rising edge of...

Page 26: ...from CLK Rising Edge 30 ns 4 CLK Low Pulse Width 23 ns 5 Output Hold Time 10 ns 68483 14 TBL 2HT 7T 7T 1T 2T MARGIN MARGIN DWX FPX BKX 25LINES 25LINES 25LINES 25LINES EVEN FIELD BKY FPY DWY BPY LINES...

Page 27: ...en Bank 0 DIB1 DIB0 MARGIN COLOR YOR XOR H BFY FPY BKY DPD VRE RFD INE BKX DWX FPX 0 MODX1 MODX0 BW MB VSIE HSIE NBLK NHVS NPC STATUS SYNC DWY DY S S DX Bd Zd S S ACW XY QF1 QF0 Bs Zs S U DXs DYs Xs Y...

Page 28: ...CELL 10T LOOP 4T CELL 4T 10T 4T 4T see Note 1 6T 5T 4T 10T AREA MEMORY WORD EXECUTIONTIME Per DOT CELL DOT CELL MEMORY WORD MEMORY WORD DMU 1 Destination mask use SP 1 Short pel long pel when SP 0 SRU...

Page 29: ...TEM MEMORY HOST MICROPROCESSOR DISPLAY MEMORY DISPLAYMEMORY INTERFACE TS68483 CRT CONTROLLER 4 SYNC SYNC R G B CRT INTERFACE MONITOR 8 OR 16 BITS 68483 32 EPS Figure 29 Typical Application TS68483A 29...

Page 30: ...re not authorized for use as critical components in life support devices or systems without express written approval of SGS THOMSON Microelectronics 1994 SGS THOMSON Microelectronics All Rights Reserv...

Reviews: