background image

1.2  DESIGN AND HANDLING PRECAUTIONS   

To maintain the primary performance of the printer and to prevent future problems from occurring, follow the 
precautions below. 

1.2.1  Design Precautions 

  Apply power in the following manner: 

At power on  : (1) Vdd 

 (2) 

Vp 

At shut down  : (1) Vp 

 (2) 

Vdd 

  A surge voltage between Vp and GND should not exceed 10V. 

  For noise countermeasure, connect a 0.1

μ

F capacitor between Vdd and GND pins near the 

connector. 

  Make the wire resistance between the power supply (Vp and GND) and the printer (connecting 

terminals) as small as possible (below 50m

). Keep distance from signal lines to reduce electrical 

interference. 

  The sensor may generate instantaneous abnormal signal. Design the firmware in order to prevent 

malfunction due to the abnormal signal. 

  Keep the Vp power off during not printing in order to prevent the thermal head from electrolytic 

corrosion. In addition, design the product so that the Signal Ground (GND) of the thermal head and 
the Frame Ground (FG) of the printer become the same electric potential. 

  Use C-MOS IC chips for CLK, /LAT, DI and DST signals of the thermal head. 

  When turning the power on or off, or during not printing, always disable the DST. 

  To prevent the thermal head from being damaged by static electricity:   

(1) Connect the printer Frame Ground (FG) connecting area to the Frame Ground (FG) of the outer   
 

case. See "CHAPTER 6 OUTER CASE DESIGN GUIDE" for details. 

(2) Connect the Signal Ground (GND) to the Frame Ground (FG) through approximately 1 M

   

 resistance. 

  Always detect the outputs of the platen position sensor and out-of-paper sensor. Never activate the 

thermal head when there is no thermal paper. Incorrect activation of the thermal head may reduce 
the life of the thermal head and the platen and may damage them. 

  A pause time between thermal head activations of the same heat element shall be secured more 

than 0.5ms. Pay attention to when using one division printing or when a thermal head activation time 
becomes longer. If activating for a long time without the pause time, the thermal head may become 
damaged. 

  If too much energy is applied to the thermal head, it may overheat and become damaged. Always 

use the printer with the specified amount of energy shown in "3.5 CONTROLLING THE 
ACTIVATION PULSE WIDTH FOR THERMAL HEAD". 

  Operation sound and vibration during printing vary depending on the motor pulse rate. Verify the 

performance with your actual device. 

  Paper feed force can be decreased depending on the motor pulse rate. Verify the performance with 

your actual device. 

  Do not perform continuous printing to prevent the motor from overheating. Refer to "3.3.5 Motor 

Drive Method" to set a pause time. 

  Paper feeding may be confused with several dot lines when printing is started from waiting status. 

When printing and paper feeding are interrupted and then started printing, as this may cause the 
paper feeding be confused. When printing bit images and so on, always feed the thermal paper for 
more than 48 steps at start up and do not interrupt printing. 

1-3 

Summary of Contents for SII LTP02-245-13

Page 1: ...LTP02 245 13 THERMAL PRINTER MECHANISM TECHNICAL REFERENCE U00131701401 ...

Page 2: ...d customers The information contained herein is the property of SII and shall not be reproduced in whole or in part without the prior written approval of SII SII reserves the right to make changes without notice to the specifications and materials contained herein and shall not be responsible for any damages including consequential caused by reliance on the materials presented including but not li...

Page 3: ... rights of these circuits before using In this manual the description of negative logic has an additional in the beginning of the terminal name The input output direction is described from the product side The printer complies with EU RoHS Directive 2011 65 EU The printer contains Pb The details are described below Printer mechanism a particular copper alloy parts a particular free cutting steel p...

Page 4: ...Position of the Data 3 16 3 4 3 Electrical Characteristics of Thermal Head 3 17 3 4 4 Timing Chart 3 18 3 4 5 Thermal Head Heat Element Resistance 3 18 3 4 6 Maximum Current Consumption 3 19 3 5 CONTROLLING THE ACTIVATION PULSE WIDTH FOR THERMAL HEAD 3 20 3 5 1 Calculation of Activation Pulse Width 3 20 3 5 2 Calculation of Printing Energy 3 20 3 5 3 Adjustment of Thermal Head Resistance 3 21 3 5 ...

Page 5: ... 6 3 6 2 1 Recommended Shape of the Platen Holder 6 3 6 2 2 Dimensions for Positioning and Fixing the Platen Holder 6 4 6 2 3 Precautions for Fixing the Platen Holder 6 5 6 3 CONNECT THE PRINTER TO FRAME GROUND FG 6 6 6 3 1 How to Connect the Printer to Frame Ground FG 6 6 6 4 LAYOUT OF THE PRINTER MECHANISM AND THERMAL PAPER 6 7 6 5 WHERE TO MOUNT THE PAPER HOLDER 6 8 6 6 DESIGN PAPER EJECT 6 9 6...

Page 6: ...3 24 Figure 3 11Sample External Circuit of the Out of paper Sensor 3 27 Figure 4 1 Connecting Terminals 4 1 Figure 5 1 Divided Print Timing Chart Sample 5 1 Figure 6 1 Dimensions for Positioning and Fixing the Printer Main Body 6 1 Figure 6 2 Dimensions for Positioning and Fixing the Platen Unit 6 3 Figure 6 3 Dimensions for Positioning and Fixing the Platen Holder 6 4 Figure 6 4 Frame Ground FG C...

Page 7: ...e 50 C 3 12 Table 3 8 Drive Time and Paper Length at Temperature Rise 75 C 3 13 Table 3 9 DST and Heating Elements 3 15 Table 3 10 Electrical Characteristics of Thermal Head 3 17 Table 3 11 Thermal Head Heat Element Resistance 3 18 Table 3 12 Standard Printing Energy and Temperature Coefficient 3 20 Table 3 13 Activation Pulse Width 3 23 Table 3 14 Temperature Characteristics of the Thermistor 3 2...

Page 8: ...roperly and safe You shall evaluate and confirm sufficiently that such products can work properly and safe and shall be liable for any and all claims actions lawsuits demands costs liabilities losses damages and or expenses arising out of or in relating to such products SII has not investigated the intellectual property rights of the sample circuits included in this manual Fully investigate the in...

Page 9: ...he thermal head to cool before cleaning In order to allow cooling secure clearance between the thermal head and the outer case when designing the outer case Precautions for rising temperatures of the motor Temperature of the motor and its peripherals rises very high during and immediately after printing Be sure to design the outer case to prevent users from burn injuries by touching them Place war...

Page 10: ...ect the Signal Ground GND to the Frame Ground FG through approximately 1 MΩ resistance Always detect the outputs of the platen position sensor and out of paper sensor Never activate the thermal head when there is no thermal paper Incorrect activation of the thermal head may reduce the life of the thermal head and the platen and may damage them A pause time between thermal head activations of the s...

Page 11: ...ctual device If the printer main body and the platen unit are not placed in proper position the print defect and the paper jam may occur Therefore pay special attention to it when designing the outer case For the position relation between the printer main body and the platen unit see CHAPTER 6 OUTER CASE DESIGN GUIDE Design the platen holder and the outer case strong enough to keep the allowable d...

Page 12: ...e platen unit during printing The print defect may occur When setting the platen unit the reduction gear may interfere with the platen gear and may cause the platen unit to not be set In such a case release the platen unit and set it again Never pull out the thermal paper while the platen unit is set The printer mechanism may become damaged When handling the printer make sure to use antistatic clo...

Page 13: ... The printer is not dust proof Never use the printer in a dusty place as it may damage the thermal head and paper drive system Do not use the printer in corrosive gas and siloxane atmosphere as it may cause the contact failure 1 2 3 Precautions on Discarding When discarding used printers discard them according to the disposal regulations and rules of each respective district ...

Page 14: ...s High resolution printing A high density print head of 8 dots mm produces clear and precise printing Compact Dimensions W67 3mm D18 1mm H30 0mm Mass approx 28 g High print speed Maximum 100mm s print is available Easy operation Platen unit open mechanism provides easy paper installation Maintenance Free No cleaning and no maintenance required Low noise Thermal printing technology realizes low noi...

Page 15: ...tivated dots 45 dots Resolution W 8 dots mm H 16 dots mm 1 Paper feed pitch 0 03125 mm Maximum print speed 100 mm s 2 Print width 48 mm Paper width mm 58 0 1 Thermal head temperature detection Thermistor Platen position detection None Out of paper detection Reflection type photo interrupter Operating voltage range Vp line Vdd line 5 5 V to 9 5 V 3 0 V to 3 6 V Current consumption Vp line Thermal h...

Page 16: ...50 gf or more Paper hold force 0 78 N 80 gf or more Dimensions excluding convex part W 67 3 mm D 18 1 mm H 30 0 mm Mass Approx 28g Specified thermal paper Nippon Paper TF50KS E2D Jujo Thermal AF50KS E AP45KS NP Mitsubishi Hi Tech Paper F5041 Papierfabrik August Koehler AG KT55F20 1 See CHAPTER 5 PRINT DRIVE METHOD for printing drive method 2 Print speed changes according to the processing speed of...

Page 17: ...FIGURATION Figure 3 1 shows print dot pitch Figure 3 2 shows print area 0 0625mm 0 125mm 0 125mm 48mm 384dot Figure 3 1 Print Dot Pitch 58 1 mm Paper Width 0 5 mm 48 mm Printing Width 5 mm Figure 3 2 Print Area 3 3 ...

Page 18: ...or Table 3 2 General Specifications of the Step Motor Item Specifications Type PM type step motor Drive method Bipolar chopper drive Excitation 1 2 phase Winding resistance per phase 8 3 Ω phase 10 Motor drive voltage Vp 5 5 V to 9 5 V Motor controlled current 300 mA phase Drive pulse rate 3200 pps max ...

Page 19: ...NC VREF REG5 REG1 IN1A OUT1A IN1B OUT1B IN2A OUT2A IN2B OUT2B ATT2 ATT1 RNF1 RNF2 CHOP GND PGND 16 22 10μF 35V Vp 13 20 18 23 14 24 6 1 Vdd 1 19 9 10 21 220pF 8 A B A B 0 1μF 12 15 1 33Ω 1 0 1μF 4 5 11 2 3 17 1 33Ω 1 1 33Ω 1 1 33Ω 1 MCL Recommended motor driver LV8711T SANYO Figure 3 3 Sample Drive Circuit ...

Page 20: ...step 4 step 5 step 6 step7 step 8 step 1 step 2 as shown in Table 3 3 START STEP 1st STEP 2nd STEP 3rd STEP 4th STEP 5th STEP 6th STEP 7th STEP 8th STEP PH1 H L PH2 H L PH3 H L PH4 H L 1 dotline 1 Set MCL to High while the motor is driven Figure 3 4 Input Voltage Waveforms for the Sample Drive Circuit Table 3 3 Excitation Sequence Input Signal Output Signal PH1 PH2 PH3 PH4 A A B B Step1 H L L L H ...

Page 21: ...e acceleration step To restart the motor from the stop step immediately shift the motor to the sequence of print step 2 Stop step To stop the motor excite the same phase as the last one in the printing step for 65ms 3 Pause state In the pause state do not excite the motor to prevent to the motor from overheating Even when the motor is not excited holding torque of the motor prevents the thermal pa...

Page 22: ...tained by equation 1 Equation 1 PM Vp 534 1339 pps PM Maximum motor drive pulse rate at Vp pps However 3200pps max Vp Motor drive voltage V Table 3 4 Maximum Motor Drive Pulse Rate Vp Maximum Motor Drive Pulse Rate 5 5 V 1598 pps 6 5 V 2132 pps 7 5 V 2666 pps 8 5 V 3200 pps 9 5 V 3200 pps During paper feeding in backward the motor should be driven lower than 960pps ...

Page 23: ... at 2nd acceleration step 4 Hereinafter drive the n th step as same as acceleration step time at n th acceleration step 5 After accelerating up to the maximum motor drive pulse rate PM drive the motor at a constant speed Available to print during acceleration Follow the procedures below if Unable to accelerate the speed for the reasons above even if following the Table 3 5 The speed has been reduc...

Page 24: ...66 2644 378 18 1347 742 67 2665 375 19 1386 721 68 2685 372 20 1424 702 69 2705 370 21 1462 684 70 2725 367 22 1498 668 71 2745 364 23 1533 652 72 2764 362 24 1568 638 73 2784 359 25 1602 624 74 2803 357 26 1635 612 75 2822 354 27 1668 600 76 2842 352 28 1700 588 77 2860 350 29 1731 578 78 2879 347 30 1762 568 79 2898 345 31 1792 558 80 2917 343 32 1822 549 81 2935 341 33 1851 540 82 2954 339 34 1...

Page 25: ...th your actual device Table 3 6 Maximum Continuous Drive Time and Drive Ratio Motor Drive Voltage Vp V 9 5V Vp 8 5V 8 5V Vp 7 5V 7 5V Vp 6 5V 6 5V Vp 5 5V 5 5V Drive Pulse Rate pps Maximum Continuous Drive Time sec Drive Ratio 320 480 100 45 45 50 55 60 480 640 67 45 45 50 55 60 640 800 50 45 45 50 55 60 800 960 40 45 45 50 55 60 960 1120 33 45 45 50 55 60 1120 1280 29 45 45 50 55 60 1280 1440 25 ...

Page 26: ...9 1 5 1 9 2 4 9 8 9 5 4 9 8 1120 1280 4 8 10 0 5 0 10 5 5 1 10 8 5 0 10 5 5 6 11 7 1280 1440 4 7 11 3 5 0 12 0 5 1 12 3 5 1 12 1 5 7 13 7 1440 1600 4 6 12 5 4 9 13 3 5 1 13 9 5 1 13 8 5 8 15 7 1600 1760 4 6 13 7 4 9 14 7 5 1 15 4 5 2 15 5 1760 1920 4 5 14 8 4 9 16 0 5 2 17 0 5 2 17 2 1920 2080 4 4 15 9 4 8 17 4 5 2 18 6 5 3 18 9 2080 2240 4 3 16 9 4 8 18 6 5 2 20 1 5 3 20 7 2240 2400 4 3 17 9 4 7 ...

Page 27: ...3 2 23 8 12 2 22 0 15 5 28 0 1120 1280 11 1 23 3 12 8 26 9 13 5 28 4 13 0 27 2 16 9 35 6 1280 1440 10 9 26 2 12 8 30 7 13 8 33 2 13 7 32 9 18 4 44 0 1440 1600 10 7 28 9 12 8 34 5 14 1 38 1 14 4 39 0 19 8 53 3 1600 1760 10 5 31 5 12 8 38 3 14 4 43 2 15 2 45 6 1760 1920 10 3 34 0 12 8 42 1 14 7 48 4 15 9 52 6 1920 2080 10 1 36 3 12 7 45 9 15 0 53 8 16 7 60 0 2080 2240 9 9 38 6 12 7 49 6 15 2 59 4 17...

Page 28: ...r See CHAPTER 5 PRINT DRIVE METHOD for details Do not perform continuous printing to prevent the motor from overheating Refer to Chapter 3 Motor Drive Method to set a pause time Surface of the thermal paper may get scratched by backward feed The backward feed may cause paper skew and jams depending on the paper roll layout and designing of the paper holder Be sure to confirm performance with your ...

Page 29: ...n accordance with the stored print data Simultaneously activated dots is 45 dots 3 4 1 Structure of the Thermal Head Figure 3 6 shows the thermal head block diagram when driving the printer Table 3 9 shows the relationship between DST and activated heating elements DOT 1 DOT 384 DOT 64 DOT 65 DOT 128 DOT 129 DOT 192 DOT 193 DOT 256 DOT 257 DOT 320 DOT 321 Heating Element Output Driver LAT Register...

Page 30: ...rred through DI are printed when driving the printer as shown in Figure 3 7 Data in Paper feed direction Paper Print surface Data 1 2 3 4 5 6 382 383 384 Printer mechanism Data input sequence 1 2 3 4 5 6 382 383 384 Figure 3 7 Transfer Data and Print Position 3 16 ...

Page 31: ...DI LAT DST 0 8 Vdd Vdd V Input voltage Low VIL CLK DI LAT DST 0 0 2 Vdd V High IIH DI VIH Vdd 0 5 A DI input current Low IIL DI VIL 0V 0 5 A High IIH DST VIH Vdd 210 A DST input current High active Low IIL DST VIL 0V 30 A High IIH CLK VIH Vdd 1 0 A CLK input current Low IIL CLK VIL 0V 1 0 A High IIH LAT VIH Vdd 1 0 A LAT input current Low IIL LAT VIL 0V 1 0 A CLK frequency fCLK 8 0 MHz CLK pulse w...

Page 32: ...T DST 8 t 5 t 4 t t7 CLK t2 t3 Figure 3 8 Thermal Head Drive Timing Chart 3 4 5 Thermal Head Heat Element Resistance Table 3 11 shows resistance of the thermal head heat element of the printer Table 3 11 Thermal Head Heat Element Resistance Thermal Head Heat Element Resistance 162 0 Ω to 198 0 Ω ...

Page 33: ...ly activated dots should be determined not to exceed power supply capacity Also allowable current for the cable material and the voltage drop on the cable should be cared well Equation 2 min H SA P R Vp N I IP Maximum current consumption A NSA Number of simultaneously activated dots Vp Thermal head drive voltage V RH min Minimum thermal head heat element resistance 162 0 Ω 3 19 ...

Page 34: ...ermal head activation pulse cycle coefficient See section 3 5 6 3 5 2 Calculation of Printing Energy The printing energy E can be calculated using equation 4 as the appropriate printing energy is different depending on each specified thermal paper and the temperature of the thermal head Equation 4 25 T T E E X C 25 E25 Standard printing energy mJ See Table 3 12 TC Temperature coefficient See Table...

Page 35: ...between control terminal and power supply 3 5 4 Adjustment of Thermal Head Drive Voltage The adjusted voltage V can be calculated using equation 6 as the printing density changes by the difference of the thermal head drive voltage Equation 6 Vp Thermal head drive voltage V 3 5 5 Setting of Activation Pause Time In order to protect the thermal head heat elements when the same heat element dots are ...

Page 36: ...alf dot line 2 at step 3 and 4 W 1 shown in the figure below should be set as W defined at Equation 8 To calculate the activation pulse width t2 for the half dot line 5 at step 9 and 10 W 2 shown in the figure below should be set as W defined at Equation 8 1st step 2nd step 3rd step 4th step 5th step 6th step 7th step 8th step 9th step 10th step 1st half dot line 2nd half dot line 3rd half dot lin...

Page 37: ... 270 0 247 0 229 60 0 391 0 325 0 280 0 248 0 224 0 205 0 190 7 5 70 0 311 0 258 0 222 0 197 0 178 0 163 0 151 10 0 729 0 607 0 524 0 465 0 420 0 385 0 356 0 333 0 314 0 0 668 0 556 0 480 0 426 0 384 0 352 0 326 0 305 0 287 10 0 606 0 505 0 436 0 386 0 349 0 320 0 296 0 277 0 261 20 0 545 0 453 0 392 0 347 0 314 0 287 0 266 0 249 0 234 30 0 483 0 402 0 348 0 308 0 278 0 255 0 236 0 221 0 208 40 0 ...

Page 38: ... 3 11 and Table 3 14 Equation 9 298 1 T 273 1 B EXP R R X 25 X RX Resistance at TX C Ω R25 Resistance at 25 C 30kΩ 5 B B value 3950K 3 TX Temperature detected by thermistor C EXP A The A th power of natural logarithm e 2 71828 1 10 100 1000 20 15 10 5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 温度 サーミスタ抵抗値 kΩ Resistance kΩ Tem perature Figure 3 10 Temperature Characteristics of t...

Page 39: ...he Thermistor Temperature C Thermistor Resistance kΩ 10 175 07 5 132 29 0 100 99 5 77 85 10 60 57 15 47 53 20 37 61 25 30 00 30 24 11 35 19 51 40 15 89 45 13 03 50 10 75 55 8 92 60 7 45 65 6 25 70 5 27 75 4 47 80 3 80 85 3 25 90 2 79 95 2 41 100 2 09 ...

Page 40: ...activated by malfunction of the control unit CPU the software for detecting abnormal temperatures may not function properly resulting in overheating of the thermal head Overheating of the thermal head not only may damage the thermal head but also may cause smoke fire and burn injuries Always use hardware together with software for detecting abnormal temperatures to ensure personal safety If the co...

Page 41: ...f the printer may be shortened significantly Table 3 15 shows about the out of paper sensor used for this printer Table 3 15 Out of paper Sensor Item Specification Type NJL5902R 2 Manufacturer New Japan Radio Co Ltd 3 27 Figure 3 11 shows sample external circuit of the out of paper sensor The PS signal is High when there is no paper Figure 3 11 Sample External Circuit of the Out of paper Sensor 3 ...

Page 42: ...rmly to the external circuits Table 4 1 Recommended Connectors Number of Terminals Recommended Connectors 24 MOLEX INC 0545502471 Right angle type Top contact Gold plated 4 2 CONNECTING TERMINALS Figure 4 1 shows the terminal configuration of the connecting terminals and Table 4 2 shows terminal assignments of the connecting terminals 1 24 Figure 4 1 Connecting Terminals 4 1 ...

Page 43: ...ve power supply 5 Vp Thermal head drive power supply 6 Vp Thermal head drive power supply 7 DI Print data input serial input 8 CLK Synchronizing for print data transfer 9 GND GND 10 GND GND 11 GND GND 12 Vdd Logic power supply 13 DST Thermal head print activation instruction 14 TH Thermistor 15 GND GND 16 GND GND 17 GND GND 18 LAT Print data latch memory storage 19 Vp Thermal head drive power supp...

Page 44: ...r steps In order to print one dot line feed the thermal paper for four steps and activate the thermal head in every two step Figure 5 1 shows a divided print timing chart 1st dot line shows a timing chart for using three divisions printing 2nd dot line shows a timing chart for using batch printing 4th step 3rd step 2nd step 1st step Start Pause PH1 PH2 PH3 PH4 CLK DI LAT DST 1st half dot line 2nd ...

Page 45: ...e motor drive signal It is not necessary to synchronize the activation of the thermal head After printing the 1st half dot line at the 1st dot line the 3rd step of the motor drive signal start activation of the thermal head by synchronized the DST signal and printing the 2nd half dot line at the 1st dot line by DST After 3rd step of the motor drive signal is completed input the 4th step of the mot...

Page 46: ...ber of the activating dots for every 1 dot line printing Logical blocks are predetermined for every 1 dot line printing The maximum current consumption can be controlled within a constant value The thermal head in the printer can be driven with one DST signal The number of the simultaneously activated dots should be 45 dots or less as the physical block 5 3 ...

Page 47: ...me between thermal head activations of the same heat element shall be secured more than 0 5ms The number of the maximum thermal head division in a half dot line should be 9 or lower to maintain print quality The number of the simultaneously activated dots should be 45 dots or less ...

Page 48: ... 2 must be used for positioning the printer main body Design bosses on the outer case to position the printer main body for the positioning holes 1 and 2 The height of the bosses on the outer case must be 1 5mm max Screw up holes A and B O 2 2 O 2 1 0 0 5 27 6 2 1 0 05 33 O 2 2 O 2 9 1 A B 2 Unit mm General tolerance 0 1 Figure 6 1 Dimensions for Positioning and Fixing the Printer Main Body 6 1 ...

Page 49: ...ng paper jamming and noise during printing may be occur The printer main body to be mounted on a flat surface and prevent from vibration Connect the Frame Ground FG to Signal Ground GND through approximately 1 MΩ resistance and make the same electric potential See 6 3 CONNECT THE PRINTER TO FRAME GROUND FG for details about how to connect the Frame Ground FG Pay attention not to damage on the FPC ...

Page 50: ... recommended shape of the platen holder Platen unit 56 65 0 0 2 A Detail A R 1 O 3 1 2 5 3 2 0 1 0 R 1 3 5 O 6 8 R 1 6 1 1 4 3 1 Center of platen at setting position 1 8 53 05 1 8 3 5 3 5 1 2 8 0 0 1 Platen holder Unit mm General tolerance for dimensions 0 1 General tolerance for angles 1º Figure 6 2 Dimensions for Positioning and Fixing the Platen Unit 6 3 ...

Page 51: ...en holder which is critical for setting or releasing the platen unit 1 5 5 10 28 MIN 150 MAX The shaded area is the position of platen holder rotation center 22 325 0 2 Unit mm General tolerance for dimensions 0 1 General tolerance for angles 1º Figure 6 3 Dimensions for Positioning and Fixing the Platen Holder 6 4 ...

Page 52: ...rotation center axis of platen holder should be 0 2 or less Design the platen holder to be strong enough to stand against stress applied during releasing and setting the platen unit Prevent from excessive stress deformation and torsion when fixing the platen unit When the platen holder rotation fulcrum of the platen holder and mounting position of the platen unit are not proper engagement of the p...

Page 53: ...act resistance The connecting force must be for arrow direction as shown in Figure 6 4 vertical to the side surface of the printer main body The material of the connecting parts should have superior electrical conductivity like beryllium copper The connecting force should be 1N or lower All Frame Ground FG must be same electrical potentials Connect the signal ground GND to the frame ground FG usin...

Page 54: ...5 Thermal head Thermal head heat element Paper Roll Printer mechanism Printer mounting plate Platen Out of paper sensor Platen holder Figure 6 5 Recommended Layout between the Printer and the Paper The thermal paper feeding distance between the out of paper sensor and the heat element is approximately 5 0mm 6 7 ...

Page 55: ...the printing problem and paper feed problem may occur in the following case even if it is below 0 49N Design the paper holder so as not to make these conditions and verify the performance with your actual device ex In case that the paper roll wobbles in the paper holder In case that tension of the thermal paper between the paper roll and the printer changes rapidly In addition do not use following...

Page 56: ...paper eject angle must be within of 70 to 90 as shown in Figure 6 7 However design the paper eject of outer case so that the thermal paper can be ejected without changing its eject direction Do not change the paper eject direction around the paper eject of printer mechanism If changing the paper eject direction verify the performance with your actual device 1 20 paper eject direction 7 0 90 paper ...

Page 57: ...ermal paper can be cut with less force than paper holding force Design the blade edge of the cutter as shown in the right figure of Figure 6 8 so that the blade edge can guide the thermal paper edge after cutting If designing the blade edge as shown in the left figure the paper edge may be caught by the blade edge and result in the thermal paper edge to be caught inside of the cutter Figure 6 8 Bl...

Page 58: ...ture of the thermal head and its peripherals rises very high during and immediately after printing Be sure to design the outer case to prevent users from burn injuries by touching them Place warning labels to warn users to ensure safe operation As for thermal head cleaning warn users to allow the thermal head to cool before cleaning In order to allow cooling secure clearance between the thermal he...

Page 59: ...hows external dimensions of the platen unit Figure 7 2 shows external dimensions of the printer 57 64 55 5 6 8 O 3 1 0 0 1 O 3 1 0 0 1 O O 8 0 5 Unit mm General tolerance for dimensions 0 5 Figure 7 1 External Dimensions of the Platen Unit 7 1 ...

Page 60: ...2 33 0 1 27 0 1 6 0 1 2 1 0 05 36 9 67 3 1 5 A A Section A A 9 0 P a p e r I n l e t A n g l e 6 6 Paper Inlet Position 9 0 P a p e r e je c t d i r e c t io n O 6 8 12 5 10 65 2 35 Paper Inlet Position 15 35 0 1 1 2 Unit mm General tolerance for dimensions 0 5 Figure 7 2 External Dimensions of the Printer Mechanism 7 2 ...

Page 61: ...p surface of the printer mechanism as shown in the Figure 8 1 When setting the platen unit the reduction gear may interfere with the platen gear and may cause the platen unit to not be set In such a case release the platen unit and set it again If the thermal paper is skewed feed the thermal paper until the thermal paper becomes straight or install the thermal paper again Remove the paper jam with...

Page 62: ...mediately after printing Clean the thermal head with the platen unit released Clean the heat element shown in Figure 8 1 using a cotton swab soaked in ethyl or isopropyl alcohol Do not use sandpaper a cutter knife or anything which may damage the heat element for cleaning Set the platen unit after the alcohol has dried completely Heat Element Figure 8 1 Cleaning Position of the Thermal Head 8 2 ...

Reviews: