background image

 

Maximizing Depth 

 
When  viewing  3D  films,  audiences  accustomed  to  scanning  the  real  3D  world  tend  to 
explore  the  entire  contents  of  the  frame,  believing  they  are  free  to  focus  and  converge 
their eyes wherever they choose. As a result, viewers may experience eyestrain when they 
try, without success, to resolve objects on the screen which are out of focus—objects that 
are beyond the lenses’ depth-of-field. For this reason 3D filmmakers generally opt to use 
lenses  with  a  wide  depth-of-field,  lenses  that,  in  the  case  of  1”  camera  imagers,  have  a 
focal length of 50 mm or under. Not only do longer lenses shrink the depth-of-field, but 
they foreshorten perspective. And because of this they can produce potentially disturbing 

cardboarding

  effects—the  illusion  that  objects  in  the  scene  are  merely  cutouts,  lacking 

modeling  or  depth.  This  artifact  can  be  counteracted,  to  a  degree,  by  choosing  a  wider 
interocular,  thereby  restoring  some  of  the  depth  to  the  scene.  But  choosing  this  option 
risks  introducing  unwanted  miniaturization  effects,  as  noted  above.  Unless,  for  some 
reason, a filmmaker specifically wishes to use artifacts such as soft focus, cardboarding, 
and  miniaturization  as  storytelling  devices,  it  is  generally  considered  advisable  to  avoid 
long  focal-length  lenses  in  3D  productions.  This  restriction  on  the  choice  of  lenses 
unfortunately  deters  most  3D  filmmakers  from  using  one  of  the  most  effective  of  2D 
filmmaking  tools—the  application  of  selective  focus  as  a  way  to  direct  the  audience’s 
attention  to  the  subjects  the  filmmaker  considers  to  be  of  primary  importance  on  the 
screen. Because of this, 3D 

filmmakers must pay renewed attention to the power of light, 

color, and composition to draw attention to the subjects in the scene that they want the 
audience to see. For example, a street that winds away into the distance can help to set 
the actors apart from the background, or the use of smoke, dim lighting, or cooler hues 
can  help  to  direct  the  audience’s  attention  to  foreground  subjects  that  are  more  clearly 
defined, more brightly lighted, or shaded in warmer tones.  

In addition, to take advantage of the unique capabilities of 3D, scenes may be composed 
in a way that emphasizes the depth of the set. In this regard, a set that includes multiple 
layers of depth may be preferable to one that includes only a few layers of depth. As an 
example, while a 2D cinematographer might stage a conversation between two actors as 
they  stand  against  a  wall,  a  3D  filmmaker,  to  take full advantage  of  the  medium,  might 
prefer  to  stage  the  same  scene  with  the  actors  conversing  as  they  stroll  down  a  street, 
passing  other  pedestrians  and  moving  through  multiple  layers  of  depth.  As  with  any 
medium, however, the ability to add depth to a scene does not obligate a filmmaker to use 
the  full  complement  of  depth-enhancing  tools.  The  3D  filmmaker  is  free  to  capture 
flattened images, if such images most effectively express the intent of a scene. 

Managing Motion 
 

Because 3D images require more time to scan and fuse (or 

read

) than 2D images, viewers 

may  be  frustrated  by  overly-rapid  camera  and/or  subject  motion.  To  avoid  this  reading 
lag, 3D filmmakers often choose to slow the pace of the camera movement and to stage 
on-screen  action  either  at  a  slower  pace  or  at  a  diagonal  relative  to  the  camera.  In  the 
same way, 

because 3D is intrinsically more subjective, more interactive, and 

explorative 

than  2D,  filmmakers  working  in  3D  generally  opt  to  keep  their  cameras  in  motion, 
allowing the cameras to travel slowly and smoothly through successive layers of depth—
i.e. relying less upon static shots and more upon carefully-planned camera choreography 
to engage the audience in the story.  

 

 

Summary of Contents for AVCCAM AG-3DA1

Page 1: ...s Fig 1 Real World 3D Simulated 3D The experience of viewing a 3D film is significantly different from the way a viewer sees 3D in the real world The most obvious differences between real world 3D and the simulated 3D that is viewed on a screen are a consequence of the fixed depth of field and the fixed point of view of the lenses that capture the images As a result of these constraints viewers wa...

Page 2: ...y strongly converging their lenses 3D filmmakers can cause the spatial geometry of a scene to seem to warp as if the space were bending toward or away from the viewer Effects such as these though unwanted in productions that aim to portray the world as it is can be useful tools for a filmmaker producing a surrealistic or fantasy film With its unique capabilities 3D is not merely a tool for adding ...

Page 3: ... e an object with zero or positive parallax the viewer s eyes remain uncrossed Because crossing the eyes can cause physical discomfort filmmakers are often cautious about using excessive negative parallax choosing instead to limit the degree to which objects are allowed to intrude into the viewer s space1 1 eyes focused on screen left image 2 eyes focused on screen left image to right of right ima...

Page 4: ...on the screen plane and C 5 refers to a shot with lenses moderately converged pulling the viewer into the screen space In terms of I O the use of wider than normal and narrower than normal camera configurations as noted above can introduce unwanted distortions However the informed use of exaggerated interoculars can help filmmakers enhance the impact of their stories A wider than normal interocula...

Page 5: ...e involves toeing in the lenses of the cameras so that the right and left images of a particular target overlap The target for setting convergence may be an object in the scene or a slate held in front of on the plane of or beyond the plane of a subject Fig 5 Image Capture The convergence point that is chosen by the filmmaker establishes the position of the zero parallax plane in the image This pl...

Page 6: ...cular and the width of the target screen Post Processing If decisions regarding convergence are deferred until post the images from the left and right eyes may be converged by the process called depth grading or horizontal image translation HIT This technique see Fig 7 involves horizontally displacing the right and left images to produce negative zero or positive parallax values on the screen plan...

Page 7: ...eme limit of positive parallax beyond the screen should be a comparable distance A larger negative parallax value may force viewers to cross their eyes to an uncomfortable degree and a larger positive parallax value may force viewers to diverge their eyes to an uncomfortable degree the so called wall eye effect Because the depth of the comfort zone is dependent upon screen size 3D films designed f...

Page 8: ...ene that they want the audience to see For example a street that winds away into the distance can help to set the actors apart from the background or the use of smoke dim lighting or cooler hues can help to direct the audience s attention to foreground subjects that are more clearly defined more brightly lighted or shaded in warmer tones In addition to take advantage of the unique capabilities of ...

Page 9: ... or post that affects one eye but not the other can induce retinal rivalry a conflict between the components of the stereo pair that disrupts the web of illusions that produce effective 3D Filming Live Events When shooting live events such as stage performances and spectator sports 3D filmmakers confront several limitations that can compromise their ability to capture effective 3D Foremost among t...

Page 10: ...rization effect that results from an overly wide I O Along with the above live event filmmakers like all other 3D filmmakers are generally advised to reject long focal length lenses in favor of those with a wide depth of field Pacing the Cut The caveats that apply to 3D production also apply to the art of composing 3D films in post In addition to carefully matching convergence and interocular dist...

Page 11: ... parallax plane or screen plane divergence the unnatural outward rotation of the human eyes to view images with an interocular that is larger than that of the average human eye 2 5 Results in wall eye interocular horizontal displacement of the lenses of the cameras hyperstereo the effect of an interocular that is larger than that of the average human eye 2 5 miniaturization an artifact that result...

Reviews: