2
GENERAL GUIDELINES
1. When servicing, observe the original lead dress. If a short
circuit is found, replace all parts which have been over-
heated or damaged by the short circuit.
2. After servicing, see to it that all the protective devices
such as insulation barriers, insulation papers shields are
properly installed.
3. After servicing, make the following leakage current
checks to prevent the customer from being exposed to
shock hazards.
LEAKAGE CURRENT COLD CHECK
1. Unplug the AC cord and connect a jumper between the
two prongs on the plug.
2. Measure the resistance value, with an ohm meter,
between the jumpered AC plug and each exposed
metallic cabinet part on the equipment such as
screwheads, connectors, control shafts, etc. The
resistance value must be more than 5M
Ω.
Figure1
LEAKAGE CURRENT HOT CHECK (See Figure 1)
1. Plug the AC cord directly into the AC outlet.
Do not use an isolation transformer for this check.
2. Connect a 1.5k
Ω
, 10W resistor, in parallel with a 0.15µ
F capacitor, between each exposed metallic part on the
set an a good earth ground such as a water pipe, as
shown in Figure1.
3. Use an AC voltmeter, with 1000 ohms/volt or more
sensitivity, to measure the potential across the resistor.
4. Check each exposed metallic part, and measure the
voltage at each point.
5. Reverses the AC plug in the AC outlet repeat each of the
above measurements.
6. The potential at any point should not exceed 0.15 volts
RMS. A leakage current tester (Simpson Model 229
equivalent) may be used to make the hot checks, leakage
current must not exceed 0.1 milliamp. In case a
measurement is outside of the limits specified, there is a
possibility of a shock hazard, and the equipment should
be repaired and rechecked before it is returned to the
customer.
ELECTROSTATICALLY SENSITIVE (ES) DEVICES
Some semiconductor (solid state) devices can be damaged
easily by static electricity. Such components commonly are
called Electrostatically sensitive (ED) Devices. Examples of
typical ES devices are integrated circuits and some field-
effect transistors and semiconductor “chip” components. The
following techniques should be used to help reduce the
incidence of component damage caused by static electricity.
1. Immediately before handling any semiconductor
component or semiconductor-equipped assembly, drain
off any electrostatic charge on your body by touching a
known earth ground.
Alternatively, obtain and wear a commercially available
discharging wrist trap device, which should be removed
for potential shock reasons prior to applying power to the
unit under test.
2. After removing an electrical assembly equipped with ES
devices, place the assembly on a conductive surface
such as aluminum foil, to prevent electrostatic charge
buildup or exposure of the assembly.
3. Use only a grounded tip soldering iron to solder or
unsolder ES devices.
4. Use only an anti-static solder removal device classified as
“anti-static” can generate electrical charges sufficient to
damage ES devices.
5. Do not use freon-propelled chemicals. These can
generate electrical charges sufficient to damage ES
devices.
6. Do not remove a replacement ES device from its
protective package until immediately before you are
ready to install it.
(most replacement ES devices are package with leads
electrically shorted together by conductive foam,
aluminum foil or comparable conductive material).
7. Immediately before removing the protective material from
the leads of a replacement ES device, touch the
protective material to the chassis or circuit assembly into
which the device will be installed.
CAUTION : Be sure no power is applied to the chassis or
circuit, and observe all other safety precautions.
8. Minimize bodily motions when handling unpacked
replacement ES devices. (Otherwise harmless motion
such as the brushing together of your clothes fabric or the
lifting of your foot from a carpeted floor can generate
static electricity sufficient to damage an ES device).
X-RADIATION
WARNING
1. The potential source of X-radiation in EVF sets is the
High Voltage section and the picture tube.
2. When using a picture tube test jig for service, ensure that
jig is capable of handling 10kV without causing x-
radiation.
Note :
It is important to use an accurate periodically
calibrated high voltage meter.
3. Measure the High Voltage. The meter (electric type)
reading should indicate 2.5kV,
0.15kV. If the meter
indication is out of tolerance, immediate service and
correction is required to prevent the possibility of
premature component failure. To prevent an x-radiation
possibility, it is essential to use the specified picture tube.
SAFETY PRECAUTIONS
±
ABOUT LEAD FREE SOLDER (PbF)
Distinction of Pbf PCB :
PCBs (manufactured) using lead free solder will have a Pbf
stamp on the PCB.
Caution :
1. Pb free solder has a high melting point than standerd
solder; Typically the melting point is 50-70˚F (30-40˚C)
higher. Please use a high temperature soldering iron. In
case of the soldering iron with temperature control,
please set it to 700
± 2 0
˚F (370
± 1 0
˚C).
2. Pb free solder will tend to splash when heated too high
(about 1100˚F/600˚C)
AC VOLTMETER
Hot-Check Circuit
TO
APPLIANCES
EXPOSED
METAL PARTS
COLD
WATER PIPE
(EARTH GROUND)
1500
Ω
0.15µF
10W
Summary of Contents for AG-DVC7P
Page 7: ...How to use extension cables Fig T1 2 6 ...
Page 20: ...Fig D2 Fig D3 19 ...
Page 21: ...Fig D4 Fig D5 Fig D6 Fig D7 20 ...
Page 22: ...Fig D8 Fig D9 Fig D10 21 ...
Page 23: ...Fig D11 Fig D12 22 ...
Page 24: ...Fig D13 Fig D14 Fig D15 23 ...
Page 69: ...68 ...
Page 87: ...86 ...
Page 100: ...12 EXPLODED VIEWS REPLACEMENT PARTS LISTS 99 ...
Page 110: ...109 12 5 VCR MECHANISM ASSEMBLY B7 B6 B8 27 28 ...
Page 122: ...SCD0302OYNK107 ...
Page 125: ...How to use extension cables Fig T1 2 6 ...
Page 138: ...Fig D2 Fig D3 19 ...
Page 139: ...Fig D4 Fig D5 Fig D6 Fig D7 20 ...
Page 140: ...Fig D8 Fig D9 Fig D10 21 ...
Page 141: ...Fig D11 Fig D12 22 ...
Page 142: ...Fig D13 Fig D14 Fig D15 23 ...
Page 187: ...68 ...
Page 205: ...86 ...
Page 218: ...12 EXPLODED VIEWS REPLACEMENT PARTS LISTS 99 ...
Page 228: ...109 12 5 VCR MECHANISM ASSEMBLY B7 B6 B8 27 28 ...