background image

9

5. If a multichannel analyzer is used following the
main amplifier, testing of the noise performance can
be accomplished by merely using a calibrated test
pulse generator with charge terminator, as outlined
in step 1. With only the charge terminator
connected to the Input of the 142, the spread of the
pulser peak thus analyzed will be due only to the
noise contribution of the preamplifier and main
amplifier. The analyzer can be calibrated in terms of
keV per channel by observing two different pulser
peaks of known energy, and the FWHM of a peak
can be computed directly from the analyzer readout.

6. It is also possible to determine the noise
performance of the preamplifier by the use of a
wide-bandwidth rms ac voltmeter such as the
Hewlett-Packard 3400A, reading the main amplifier
output noise level and correlating with the expected
pulse amplitudes per keV of input signal under the
same conditions. Again, a calibrated test pulse
generator is required for an accurate measurement.

In this method the preamplifier and main amplifier
are set up as they would be used normally, but with
a dummy capacitor (or no capacity) on the Input
connector of the 142, and with the ac voltmeter
connected to the main amplifier output. The noise
voltage indicated on the meter, designated E

rms

, is

read and noted. Then a test pulse of known energy,
E

in

 (in keV), is applied to the Input and the

amplitude of the resulting output pulse, E

out

 is

measured in volts with an oscilloscope. The noise
spread can then be calculated from the formula 

where E

rms

 is output noise in volts on the 3400A

meter, E

in

 is input signal in keV particle energy, and

E

out

 is output signal in volts corresponding to the

above input. If the gain of the shaping amplifier is
adjusted so that the output pulse height is 2.35 V for
an input of 1 MeV equivalent charge, then the rms
meter will be calibrated directly in energy (1 mV =
1 keV). 

7. The noise performance of the preamplifier, as
measured by these methods, should not differ
significantly from that given in the specifications in
Section 2. 

8. lf, during testing of the preamplifier and detector,
the noise performance of the preamplifier has been
verified as outlined in the preceding section or is
otherwise not suspected, a detector may be tested
to some extent by duplicating the noise
performance tests with the detector connected in
place and with normal operating bias applied. The
resulting combined noise measurement, made
either with an analyzer or by the voltmeter method,
indicates the sum in quadrature of the separate
noise sources of the amplifier and the detector. In
other words, the total noise is given by   (N

tot

)

2

  =

(N

det

)

2

 + (N

amp

)

2

.

9. Each quantity is expressed in keV FWHM. The
quantity N

det

 is known as the "noise width" of the

detector, and is included as one of the specified
parameters of each ORTEC semiconductor
detector. By use of the above equation and with a
knowledge of the noise of the preamplifier, the
noise width of the detector can be determined. The
significance of this noise width in evaluating the
detector is subject to interpretation, but generally
the actual resolution of the detector for protons or
electrons will be approximately the same as the
noise width; the resolution of the detector for alpha
particles will be poorer than the noise width. The
most useful application of determining the noise
width of a detector is in the occasional monitoring of
this quantity to verify that the detector
characteristics have not undergone any significant
change during use. 

10. Use an ORTEC 419 Precision Pulse Generator
with a matched charge termination to measure the
rise time of the 142 through the T (timing) or E
(energy) output. Connect the 419 output through the
charge terminator to the 142 Input and use an
oscilloscope with a fast (1-ns if possible) rise time.
The rise time of the preamplifier can then be
computed by: 

     (Total rise time)

2

 = (Preamp rise time)

2

  

      + (Pulser rise time)

2

 + (Oscilloscope rise time)

2

.

The rise time of the 419 is typically 3 ns. 

Summary of Contents for 142A

Page 1: ...Models 142A 142B and 142C Preamplifiers Operating and Service Manual Printed in U S A ORTEC Part No 627990 1202 Manual Revision D...

Page 2: ...n so that a Return Authorization Number can be assigned to the unit Also ORTEC must be informed either in writing by telephone 865 482 4411 or by facsimile transmission 865 483 2133 of the nature of t...

Page 3: ...ON 4 3 1 CONNECTION TO DETECTOR 4 3 2 ENERGY OUTPUT CONNECTION TO MAIN SHAPING AMPLIFIER 4 3 3 TIMING OUTPUT CONNECTION TO TIMING MODULES 4 3 4 INPUT OPERATING POWER 4 3 5 TEST PULSE 4 3 6 DETECTOR BI...

Page 4: ...a hazard that could result in bodily harm if the safety instruction is not observed CAUTION Indicates a hazard that could result in property damage if the safety instruction is not observed Please re...

Page 5: ...he instrument during external cleaning use only enough liquid to dampen the cloth or applicator SAFETY WARNINGS AND CLEANING INSTRUCTIONS Cleaning Instructions To clean the instrument exterior Unplug...

Page 6: ...e device to the Detector Input connector on the preamplifier 2 Discharge the detector bias circuitry before making ANY connections to the Detector Input connectorand before disconnecting the preamplif...

Page 7: ...ults however the T output should be terminated in 50 S when not in use A bias circuit is included to accept the operating voltage required by the surface barrier detector The bias input circuit in the...

Page 8: ...42B Nominally 20 mV MeV 142C Nominally 20 mV MeV ENERGY RANGE 142A 0 200 MeV 142B 0 400 MeV 142C 0 400 MeV RISE TIME 0 to 0 5 V Pulse at E output on 93S Load Fig 2 3 142A 5 ns at 0 pF 12 ns at 100 pF...

Page 9: ...s a differentiated output signal compatible with typical 50 S timing system requirements polarity is the same as the input pulse polarity Fig 2 4 2 4 CONNECTORS INPUT TEST E AND T BNC UG 1094 U BIAS S...

Page 10: ...y is also used to furnish the preamplifier power requirements that are available on all ORTEC main amplifiers 3 3 TIMING OUTPUT CONNECTION TO TIMING MODULES The T output of the preamplifier can be use...

Page 11: ...leakage current is small R3 should not be installed in the circuit because it would tend to degrade the noise performance 4 2 DETECTOR BIAS The amount of bias required by the detector is specified in...

Page 12: ...from the signal polarity at the detector output When the normal positive bias polarity is used for the detector the detector output pulses are negative and the E output of the preamplifier is positive...

Page 13: ...the 142C the adjustment has been made for 400 pF For optimum results for other input capacities the control should be adjusted under actual operating conditions If the control has been adjusted for op...

Page 14: ...alent energy The timing outputs should have the same polarity as the inputs with a scale factor of about 20 less than the signals through the E outputs 3 The noise contribution of the preamplifier may...

Page 15: ...eV 7 The noise performance of the preamplifier as measured by these methods should not differ significantly from that given in the specifications in Section 2 8 lf during testing of the preamplifier a...

Page 16: ...AIR This instrument can be returned to ORTEC for service and repair at a nominal cost Our standard procedure for repair ensures the same quality control and checkout that are used for a new instrument...

Reviews: