background image

8

preamplifier, which increases as detector capacity
increases. 

With the protection circuit in, the emitter lead of
Q11 is attached to the input of the first FET stage
and this prevents the voltage at that point from
increasing beyond the safe range for the FET input.
Resistor R5 protects both the clamp and the FET

from damage. To take the protection circuit out,
simply remove the emitter lead of Q11 from its
circuit connection and install a wire jumper across
R5. A formed wire jumper is included as an
accessory in the shipping bag and is to be used for
this purpose when operation is desired with the
protection circuit bypassed.  

5.  MAINTENANCE INSTRUCTIONS

5.1.  TESTING PERFORMANCE

 
As ordinarily used in a counting or spectroscopy
system, the preamplifier is one part of a series
system involving the source of particles to be
analyzed, the detector, the preamplifier, the main
amplifier, and the pulse height analyzer. When
proper results are not being obtained and tests for
proper performance of the preamplifier and the
other components are indicated, it is important to
realize that rapid and logical testing is possible only
when the individual components are separated from
the system. In proving the performance of the
preamplifier, it should be removed from the system
and be dealt with alone, by providing a known
electrical input signal and testing for the proper
output signals with an oscilloscope as specified
below. 

1. Furnish a voltage pulse to the Test connector, as
outlined in Section 3.5. The polarity of the test pulse
signal should agree with the expected signal input
polarity from a detector. 

2. Using a calibrated pulser, the 142A E output
should be inverted from the input polarity and
should have a nominal scale factor of 45 mV output
per 1 MeV equivalent energy (Si). The 142B and C
E outputs should also be inverted from the input
polarity and have about 20 mV per 1 MeV input
equivalent energy. The timing outputs should have
the same polarity as the inputs with a scale factor of
about 20% less than the signals through the E
outputs. 

3. The noise contribution of the preamplifier may be
verified by two basic methods. In either case, the
normal capacity of the detector and associated
cables should be replaced by a capacitor of equal

value connected to the Input connector. This is
necessary because the noise contribution of the
preamplifier is dependent upon input capacity, as
can be seen from the noise specifications given in
Section 2. The only meaningful statement of the
noise level of the preamplifier is one that relates to
the spread caused by the noise in actual spectra.
This can be measured and expressed in terms of
the full width at half maximum (FWHM) of a
monoenergetic signal after passing through the
preamplifier and main amplifier system. The noise
performance referenced in Section 2 is stated in
these terms, and verification methods will be
described. If desired, the preamplifier can be tested
with no external capacity on the Input connector, in
which case the noise width should be approximately
that shown for zero external capacity. In any case,
the input connector and capacitors, when used,
should be completely shielded electrically. A
wrapping of aluminum foil around the Input
connector or a shielding cap attached to the
connector will suffice for testing at zero capacity. 

4. The preamplifier must be tested in conjunction
with an associated main amplifier that provides the
required pulse shaping. The typical noise
performance given in Section 2 is obtained using an
ORTEC 572 Spectroscopy Amplifier on which the
time constants have been set as specified. For
comparison of these tabulated values, it is
preferable to test the preamplifier under identical
pulse-shaping conditions. It is also important to
ensure that the noise level of the input stage of the
associated main amplifier does not contribute
materially to the total noise. This is usually no
problem provided that input attenuators, if any, on
the main amplifier are set for minimum attenuation.

Summary of Contents for 142A

Page 1: ...Models 142A 142B and 142C Preamplifiers Operating and Service Manual Printed in U S A ORTEC Part No 627990 1202 Manual Revision D...

Page 2: ...n so that a Return Authorization Number can be assigned to the unit Also ORTEC must be informed either in writing by telephone 865 482 4411 or by facsimile transmission 865 483 2133 of the nature of t...

Page 3: ...ON 4 3 1 CONNECTION TO DETECTOR 4 3 2 ENERGY OUTPUT CONNECTION TO MAIN SHAPING AMPLIFIER 4 3 3 TIMING OUTPUT CONNECTION TO TIMING MODULES 4 3 4 INPUT OPERATING POWER 4 3 5 TEST PULSE 4 3 6 DETECTOR BI...

Page 4: ...a hazard that could result in bodily harm if the safety instruction is not observed CAUTION Indicates a hazard that could result in property damage if the safety instruction is not observed Please re...

Page 5: ...he instrument during external cleaning use only enough liquid to dampen the cloth or applicator SAFETY WARNINGS AND CLEANING INSTRUCTIONS Cleaning Instructions To clean the instrument exterior Unplug...

Page 6: ...e device to the Detector Input connector on the preamplifier 2 Discharge the detector bias circuitry before making ANY connections to the Detector Input connectorand before disconnecting the preamplif...

Page 7: ...ults however the T output should be terminated in 50 S when not in use A bias circuit is included to accept the operating voltage required by the surface barrier detector The bias input circuit in the...

Page 8: ...42B Nominally 20 mV MeV 142C Nominally 20 mV MeV ENERGY RANGE 142A 0 200 MeV 142B 0 400 MeV 142C 0 400 MeV RISE TIME 0 to 0 5 V Pulse at E output on 93S Load Fig 2 3 142A 5 ns at 0 pF 12 ns at 100 pF...

Page 9: ...s a differentiated output signal compatible with typical 50 S timing system requirements polarity is the same as the input pulse polarity Fig 2 4 2 4 CONNECTORS INPUT TEST E AND T BNC UG 1094 U BIAS S...

Page 10: ...y is also used to furnish the preamplifier power requirements that are available on all ORTEC main amplifiers 3 3 TIMING OUTPUT CONNECTION TO TIMING MODULES The T output of the preamplifier can be use...

Page 11: ...leakage current is small R3 should not be installed in the circuit because it would tend to degrade the noise performance 4 2 DETECTOR BIAS The amount of bias required by the detector is specified in...

Page 12: ...from the signal polarity at the detector output When the normal positive bias polarity is used for the detector the detector output pulses are negative and the E output of the preamplifier is positive...

Page 13: ...the 142C the adjustment has been made for 400 pF For optimum results for other input capacities the control should be adjusted under actual operating conditions If the control has been adjusted for op...

Page 14: ...alent energy The timing outputs should have the same polarity as the inputs with a scale factor of about 20 less than the signals through the E outputs 3 The noise contribution of the preamplifier may...

Page 15: ...eV 7 The noise performance of the preamplifier as measured by these methods should not differ significantly from that given in the specifications in Section 2 8 lf during testing of the preamplifier a...

Page 16: ...AIR This instrument can be returned to ORTEC for service and repair at a nominal cost Our standard procedure for repair ensures the same quality control and checkout that are used for a new instrument...

Reviews: