background image

MC34067, MC33067

http://onsemi.com

8

OPERATING DESCRIPTION

Introduction

As power supply designers have strived to increase power

conversion efficiency and reduce passive component size,
high frequency resonant mode power converters have
emerged as attractive alternatives to conventional
pulse

width modulated control. When compared to

pulse

width modulated converters, resonant mode control

offers several benefits including lower switching losses,
higher efficiency, lower EMI emission, and smaller size.
A new integrated circuit has been developed to support this
trend in power supply design. The MC34067 Resonant
Mode Controller is a high performance bipolar IC dedicated
to variable frequency power control at frequencies
exceeding 1.0 MHz. This integrated circuit provides the
features and performance specifically for zero voltage
switching resonant mode power supply applications.

The primary purpose of the control chip is to provide a

fixed off

time to the gates of external power MOSFETs at

a repetition rate regulated by a feedback control loop.
Additional features of the IC ensure that system startup and
fault conditions are administered in a safe, controlled manner.

A simplified block diagram of the IC is shown on the front

page, which identifies the main functional blocks and the
block

to

block interconnects. Figure 14  is  a  detailed

functional diagram which accurately represents the internal
circuitry. The various functions can be divided into two
sections. The first section includes the primary control path
which produces precise output pulses at the desired
frequency. Included in this section are a variable frequency
Oscillator, a One

Shot, a pulse Steering Flip

Flop, a pair of

power MOSFET Drivers, and a wide bandwidth Error
Amplifier. The second section provides several peripheral
support functions including a voltage reference,
undervoltage lockout, soft

start circuit, and a fault detector.

Primary Control Path

The output pulse width and repetition rate are regulated

through the interaction of the variable frequency Oscillator,
One

Shot timer and Error Amplifier. The Oscillator triggers

the One

Shot which generates a pulse that is alternately

steered to a pair of totem pole output drivers by a toggle
Flip

Flop. The Error Amplifier monitors the output of the

regulator and modulates the frequency of the Oscillator.
High speed Schottky logic is used throughout the primary
control channel to minimize delays and enhance high
frequency characteristics.

Oscillator

The characteristics of the variable frequency Oscillator

are crucial for precise controller performance at high
operating frequencies. In addition to triggering the
One

Shot timer and initiating the output deadtime, the

oscillator also determines the initial voltage for the one

shot

capacitor. The Oscillator is designed to operate at

frequencies exceeding 1.0 MHz. The Error Amplifier can
control the oscillator frequency over a 1000:1 frequency
range, and both the minimum and maximum frequencies are
easily and accurately programmed by the proper selection of
external components.

The functional diagram of the Oscillator and One

Shot

timer is shown in Figure 16. The oscillator capacitor (C

OSC

)

is initially charged by transistor Q1. When C

OSC

 exceeds the

4.9 V upper threshold of the oscillator comparator, the base
of Q1 is pulled low allowing C

OSC

 to discharge through the

external resistor, (R

OSC

)

,

 and the oscillator control current,

(I

OSC

). When the voltage on C

OSC

 falls below the 3.6 V

lower threshold of the comparator, Q1 turns on and again
charges C

OSC

.

C

OSC

 charges from 3.6 V to 5.1 V in less than 50 ns. The

high slew rate of C

OSC

 and the propagation delay of the

comparator make it difficult to control the peak voltage. This
accuracy issue is overcome by clamping the base of Q1
through a diode to a voltage reference. The peak voltage of
the oscillator waveform is thereby precisely set at 5.1 V.

Figure 16. Oscillator and One

Shot Timer

Oscillator

Control Current

C

OSC

R

T

C

T

R

OSC

4.9 V/3.6 V

1

2

10

3

OSC Charge

OSC RC

One-Shot RC

D1

Q1

I

OSC

Oscillator

One-Shot

3.1 V

4.9V/3.6V

V

ref

Error Amp Output

6

Error Amp
Clamp

R

VFO

I

OSC

V

CC

V

CC

The frequency of the Oscillator is modulated by varying

the current flowing out of the Oscillator Control Current
(I

OSC

) pin. The I

OSC

 pin is the output of a voltage regulator.

The input of the voltage regulator is tied to the variable
frequency oscillator. The discharge current of the Oscillator
increases by increasing the current out of the I

OSC

 pin.

Resistor R

VFO 

is used in conjunction with the Error Amp

output to change the I

OSC

 current. Maximum frequency

occurs when the Error Amplifier output is at its low state
with a saturation voltage of 0.1 V at 1.0 mA.

The minimum oscillator frequency will result when the

I

OSC

 current is zero, and C

OSC

 is discharged through the

external resistor (R

OSC

). This occurs when the Error

Amplifier output is at its high state of 2.5 V. The minimum
and maximum oscillator frequencies are programmed by the
proper selection of resistor R

OSC

 and R

VFO

.

Downloaded from 

Elcodis.com

 

electronic components distributor

 

Summary of Contents for MC33067

Page 1: ... Thresholds with Hysteresis Enable Input Programmable Soft Start Circuitry Low Startup Current for Off Line Operation These Devices are Pb Free Halogen Free BFR Free and are RoHS Compliant Figure 1 Simplified Block Diagram Noninverting Input 11 8 6 16 3 2 1 OSC Charge Enable UVLO Adjust VCC 15 5 14 12 13 Vref UVLO Error Amp VCC UVLO Enable Fault Detector Latch 2 5 V Clamp Soft Start One Shot Outpu...

Page 2: ...ature Tstg 55 to 150 C ESD Capability HBM Model 2 0 kV ESD Capability MM Model 200 V Stresses exceeding Maximum Ratings may damage the device Maximum Ratings are stress ratings only Functional operation above the Recommended Operating Conditions is not implied Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability ORDERING INFORMATION Device Package ...

Page 3: ...ERROR AMPLIFIER Input Offset Voltage VCM 1 5 V VIO 1 0 10 mV Input Bias Current VCM 1 5 V IIB 0 2 1 0 mA Input Offset Current VCM 1 5 V IIO 0 0 5 mA Open Loop Voltage Gain VCM 1 5 V VO 2 0 V AVOL 70 100 dB Gain Bandwidth Product f 100 kHz TA 25 C TA Tlow to Thigh GBW 3 0 2 7 5 0 MHz Input Common Mode Rejection Ratio VCM 1 5 V to 5 0 V CMR 70 95 dB Power Supply Rejection Ratio VCC 10 V to 18 V f 12...

Page 4: ...T COMPARATOR Input Threshold Vth 0 93 1 0 1 07 V Input Bias Current VPin 10 0 V IIB 2 0 10 mA Propagation Delay to Drive Outputs 100 mV Overdrive tPLH In Out 60 100 ns SOFT START Capacitor Charge Current VPin 11 2 5 V Ichg 4 5 9 0 14 mA Capacitor Discharge Current VPin 11 2 5 V Idischg 3 0 8 0 mA UNDERVOLTAGE LOCKOUT Startup Threshold VCC Increasing Enable UVLO Adjust Pin Open Enable UVLO Adjust P...

Page 5: ...0 70 80 90 100 120 110 0 EXCESS PHASE DEGREES COSC 500 pF COSC 300 pF VCC 12 V RVFO RT CT 500 pF TA 25 C Figure 2 Oscillator Timing Resistor versus Discharge Time Figure 3 Oscillator Frequency versus Oscillator Control Current Figure 4 Error Amp Output Low State Voltage versus Oscillator Control Current Figure 5 One Shot Timing Resistor versus Period Figure 6 Open Loop Voltage Gain and Phase versu...

Page 6: ...40 1 0 2000 1600 1200 800 400 0 f OPERATING FREQUENCY kHz Figure 12 Operating Frequency versus Supply Current ICC SUPPLY CURRENT mA Source Saturation Load to Ground Source Saturation Load to VCC OL GND TA 40 C TA 25 C Figure 13 Supply Current versus Supply Voltage TA 25 C TA 40 C VCC SUPPLY VOLTAGE V 20 12 4 0 0 I SUPPLY CURRENT mA CC 16 8 0 VCC 12 V 80 ms Pulsed Load 120 Hz Rate TA 40 C CL 1 0 nF...

Page 7: ...r One Shot Error Amp Clamp 3 1V Error Amp 9 0 mA 1 0 V Q Q T Steering Flip Flop 4 2 4 0 V Vref UVLO VCC UVLO 7 0k 50k 7 0k 50k 4 9 V 3 6 V Vref 5 1 V Reference 1 2 6 11 5 10 Figure 15 Timing Diagram 5 1 V 3 6 V COSC 5 1 V 3 6 V One Shot Output A Output B tOS tOS tOS tOS tOS tOS High State Error Amp output minimum IOSC current occurring at minimum input voltage maximum load Low State Error Amp outp...

Page 8: ...enhance high frequency characteristics Oscillator The characteristics of the variable frequency Oscillator are crucial for precise controller performance at high operating frequencies In addition to triggering the One Shot timer and initiating the output deadtime the oscillator also determines the initial voltage for the one shot capacitor The Oscillator is designed to operate at frequencies excee...

Page 9: ...parators are OR d together to produce the pulse tOS which drives the Flip Flop and output drivers The output pulse tOS is initiated by the Oscillator and terminated by the One Shot comparator With zero voltage resonant mode converters the oscillator discharge time should never be set less than the one shot period Error Amplifier A fully accessible high performance Error Amplifier is provided for f...

Page 10: ...ly designer to select the VCC UVLO threshold voltages When this pin is open the comparator switches the controller on at 16 V and off at 9 0 V If this pin is connected to the VCC terminal the upper and lower thresholds are reduced to 9 0 V and 8 6 V respectively Forcing the Enable UVLO Adjust pin low will pull the VCC UVLO comparator input low through an internal diode turning off the controller T...

Page 11: ...verter delivering 75 W to the output from a 48 V source When building a zero voltage switch ZVS circuit the objective is to waveshape the power transistor s voltage waveform so that the voltage across the transistor is zero when the device is turned on The purpose of the control IC is to allow a resonant tank to waveshape the voltage across the power transistor while still maintaining regulation T...

Page 12: ...tch is activated while the primary current is slewing but before the current changes polarity The resonant stage should then be designed to be as long as the time for the primary current to go to 0 A Figure 21 Application Timing Diagram 0 A Iprimary Iprimary Output Rectifier Voltage 0 V 1 2 Vin Vin Drive Output B Drive Output A One Shot 3 6 V 5 1 V COSC 3 6 V 5 1 V Vin Turns Ratio Primary Current ...

Page 13: ...A f switch 1 0 MHz 0 198 4 0 mV 0 039 25 mV p p 83 5 84 2 T1 Primary 12 turns 48 AWG 1300 strands litz wire Secondary 6 turns center tapped 48 AWG 1300 strands litz wire Core Philips 3F3 4312 020 4124 Bobbin Philips 4322 021 3525 Primary Leakage Inductance 1 0 H μ T2 All windings 8 turns 36 AWG Core Philips 3F3 EP7 3F3 Bobbin Philips EP7PCB1 6 T3 Coilcraft D1870 100 turns L1 2 turns 48 AWG 1300 st...

Page 14: ...MC34067 MC33067 http onsemi com 14 5 0 Bottom View Figure 23 Printed Circuit Board and Component Layout Top View 3 875 Downloaded from Elcodis com electronic components distributor ...

Page 15: ...ROUNDED CORNERS OPTIONAL A B F C S H G D J L M 16 PL SEATING 1 8 9 16 K PLANE T M A M 0 25 0 010 T DIM MIN MAX MIN MAX MILLIMETERS INCHES A 0 740 0 770 18 80 19 55 B 0 250 0 270 6 35 6 85 C 0 145 0 175 3 69 4 44 D 0 015 0 021 0 39 0 53 F 0 040 0 70 1 02 1 77 G 0 100 BSC 2 54 BSC H 0 050 BSC 1 27 BSC J 0 008 0 015 0 21 0 38 K 0 110 0 130 2 80 3 30 L 0 295 0 305 7 50 7 74 M 0 10 0 10 S 0 020 0 040 0...

Page 16: ...ense under its patent rights nor the rights of others SCILLC products are not designed intended or authorized for use as components in systems intended for surgical implant into the body or other applications intended to support or sustain life or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur Should Buyer purc...

Reviews: