background image

MC34067, MC33067

http://onsemi.com

10

The totem

pole output drivers are ideally suited for driving

power MOSFETs and are capable of sourcing and sinking
1.5 A. Rise and fall times are typically 20 ns and 15 ns
respectfully when driving a 1.0 nF load. High source/sink
capability in a totem

pole driver normally increases the risk

of high cross conduction current during output transitions.

The MC34067 utilizes a unique design that virtually
eliminates cross conduction, thus controlling the chip power
dissipation at high frequencies. A separate power ground pin
is provided to isolate the sensitive analog circuitry from large
transient currents.

Figure 19. Undervoltage Lockout and Reference

8.0 V

V

ref

15

9

V

CC

5

V

ref

4.2/4.0 V

V

ref

 UVLO

V

CC

 UVLO

7.0k

50k

7.0k

50k

5.1 V

Reference

Enable /

UVLO Adjust

UVLO

PERIPHERAL SUPPORT FUNCTIONS

The MC34067 Resonant Controller provides a number of

support and protection functions including a precision
voltage reference, undervoltage lockout comparators,
soft

start circuitry, and a fault detector. These peripheral

circuits ensure that the power supply can be turned on and
off in a controlled manner and that the system will be quickly
disabled when a fault condition occurs.

Undervoltage Lockout and Voltage Reference

Separate undervoltage lockout comparators sense the

input V

CC

 voltage and the regulated reference voltage as

illustrated in Figure 19. When V

CC

 increases to the upper

threshold voltage, the V

CC

 UVLO comparator enables the

Reference Regulator. After the V

ref

 output of the Reference

Regulator rises to 4.2 V, the V

ref

 UVLO comparator switches

the UVLO signal to a logic zero state enabling the primary
control path. Reducing V

CC

 to the lower threshold voltage

causes the V

CC

 UVLO comparator to disable the Reference

Regulator. The V

ref

 UVLO comparator then switches the

UVLO output to a logic one state disabling the controller.

The Enable/UVLO Adjust pin allows the power supply

designer to select the V

CC

 UVLO threshold voltages. When

this pin is open, the comparator switches the controller on at
16 V and off at 9.0 V. If this pin is connected to the V

CC

terminal, the upper and lower thresholds are reduced to
9.0 V and 8.6 V, respectively. Forcing the Enable/UVLO
Adjust pin low will pull the V

CC

 UVLO comparator input

low (through an internal diode) turning off the controller.

The Reference Regulator provides a precise 5.1 V

reference to internal circuitry and can deliver up to 10 mA

to external loads. The reference is trimmed to better than 2%
initial accuracy and includes active short circuit protection.

Fault Detection

Converter protection from adverse operating conditions

can be implemented with proper use of the Fault Comparator
and Latch blocks that are illustrated in Figure 20. The Fault
Comparator has an input threshold of 1.0 V and when
exceeded, sets the Fault Latch and generates two logic
signals that simultaneously disable the primary control path.
The signal line labeled “Fault” connects directly to two gates
that control the output drivers. This direct path reduces the
driver turn

off propagation delay to approximately 70 ns.

The Fault Latch output is OR’ed with the UVLO output that
is derived from the V

ref

 UVLO comparator, to produce the

logic output labeled “UVLO+Fault”. This signal disables
the Oscillator and the One

Shot by forcing both the C

OSC

and C

T

 capacitors to be continually charged.

The Fault Latch is automatically reset during startup by a

logic “1” that appears at the V

ref

 UVLO comparator output.

The latch can also be reset after startup by momentarily
pulling the Enable/UVLO Adjust pin low to disable the
Reference. Note that after activation, the Fault Latch will
remain in a set state only as long as V

CC

 is provided to the

MC34067. Also, Drive Output B will assume a high state if
the Fault input signal drops below the 1.0 V threshold level
even after the Fault Latch has been set. In some applications
this characteristic could be problematic but it can be easily
remedied by AC coupling Drive Output B.

Downloaded from 

Elcodis.com

 

electronic components distributor

 

Summary of Contents for MC33067

Page 1: ... Thresholds with Hysteresis Enable Input Programmable Soft Start Circuitry Low Startup Current for Off Line Operation These Devices are Pb Free Halogen Free BFR Free and are RoHS Compliant Figure 1 Simplified Block Diagram Noninverting Input 11 8 6 16 3 2 1 OSC Charge Enable UVLO Adjust VCC 15 5 14 12 13 Vref UVLO Error Amp VCC UVLO Enable Fault Detector Latch 2 5 V Clamp Soft Start One Shot Outpu...

Page 2: ...ature Tstg 55 to 150 C ESD Capability HBM Model 2 0 kV ESD Capability MM Model 200 V Stresses exceeding Maximum Ratings may damage the device Maximum Ratings are stress ratings only Functional operation above the Recommended Operating Conditions is not implied Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability ORDERING INFORMATION Device Package ...

Page 3: ...ERROR AMPLIFIER Input Offset Voltage VCM 1 5 V VIO 1 0 10 mV Input Bias Current VCM 1 5 V IIB 0 2 1 0 mA Input Offset Current VCM 1 5 V IIO 0 0 5 mA Open Loop Voltage Gain VCM 1 5 V VO 2 0 V AVOL 70 100 dB Gain Bandwidth Product f 100 kHz TA 25 C TA Tlow to Thigh GBW 3 0 2 7 5 0 MHz Input Common Mode Rejection Ratio VCM 1 5 V to 5 0 V CMR 70 95 dB Power Supply Rejection Ratio VCC 10 V to 18 V f 12...

Page 4: ...T COMPARATOR Input Threshold Vth 0 93 1 0 1 07 V Input Bias Current VPin 10 0 V IIB 2 0 10 mA Propagation Delay to Drive Outputs 100 mV Overdrive tPLH In Out 60 100 ns SOFT START Capacitor Charge Current VPin 11 2 5 V Ichg 4 5 9 0 14 mA Capacitor Discharge Current VPin 11 2 5 V Idischg 3 0 8 0 mA UNDERVOLTAGE LOCKOUT Startup Threshold VCC Increasing Enable UVLO Adjust Pin Open Enable UVLO Adjust P...

Page 5: ...0 70 80 90 100 120 110 0 EXCESS PHASE DEGREES COSC 500 pF COSC 300 pF VCC 12 V RVFO RT CT 500 pF TA 25 C Figure 2 Oscillator Timing Resistor versus Discharge Time Figure 3 Oscillator Frequency versus Oscillator Control Current Figure 4 Error Amp Output Low State Voltage versus Oscillator Control Current Figure 5 One Shot Timing Resistor versus Period Figure 6 Open Loop Voltage Gain and Phase versu...

Page 6: ...40 1 0 2000 1600 1200 800 400 0 f OPERATING FREQUENCY kHz Figure 12 Operating Frequency versus Supply Current ICC SUPPLY CURRENT mA Source Saturation Load to Ground Source Saturation Load to VCC OL GND TA 40 C TA 25 C Figure 13 Supply Current versus Supply Voltage TA 25 C TA 40 C VCC SUPPLY VOLTAGE V 20 12 4 0 0 I SUPPLY CURRENT mA CC 16 8 0 VCC 12 V 80 ms Pulsed Load 120 Hz Rate TA 40 C CL 1 0 nF...

Page 7: ...r One Shot Error Amp Clamp 3 1V Error Amp 9 0 mA 1 0 V Q Q T Steering Flip Flop 4 2 4 0 V Vref UVLO VCC UVLO 7 0k 50k 7 0k 50k 4 9 V 3 6 V Vref 5 1 V Reference 1 2 6 11 5 10 Figure 15 Timing Diagram 5 1 V 3 6 V COSC 5 1 V 3 6 V One Shot Output A Output B tOS tOS tOS tOS tOS tOS High State Error Amp output minimum IOSC current occurring at minimum input voltage maximum load Low State Error Amp outp...

Page 8: ...enhance high frequency characteristics Oscillator The characteristics of the variable frequency Oscillator are crucial for precise controller performance at high operating frequencies In addition to triggering the One Shot timer and initiating the output deadtime the oscillator also determines the initial voltage for the one shot capacitor The Oscillator is designed to operate at frequencies excee...

Page 9: ...parators are OR d together to produce the pulse tOS which drives the Flip Flop and output drivers The output pulse tOS is initiated by the Oscillator and terminated by the One Shot comparator With zero voltage resonant mode converters the oscillator discharge time should never be set less than the one shot period Error Amplifier A fully accessible high performance Error Amplifier is provided for f...

Page 10: ...ly designer to select the VCC UVLO threshold voltages When this pin is open the comparator switches the controller on at 16 V and off at 9 0 V If this pin is connected to the VCC terminal the upper and lower thresholds are reduced to 9 0 V and 8 6 V respectively Forcing the Enable UVLO Adjust pin low will pull the VCC UVLO comparator input low through an internal diode turning off the controller T...

Page 11: ...verter delivering 75 W to the output from a 48 V source When building a zero voltage switch ZVS circuit the objective is to waveshape the power transistor s voltage waveform so that the voltage across the transistor is zero when the device is turned on The purpose of the control IC is to allow a resonant tank to waveshape the voltage across the power transistor while still maintaining regulation T...

Page 12: ...tch is activated while the primary current is slewing but before the current changes polarity The resonant stage should then be designed to be as long as the time for the primary current to go to 0 A Figure 21 Application Timing Diagram 0 A Iprimary Iprimary Output Rectifier Voltage 0 V 1 2 Vin Vin Drive Output B Drive Output A One Shot 3 6 V 5 1 V COSC 3 6 V 5 1 V Vin Turns Ratio Primary Current ...

Page 13: ...A f switch 1 0 MHz 0 198 4 0 mV 0 039 25 mV p p 83 5 84 2 T1 Primary 12 turns 48 AWG 1300 strands litz wire Secondary 6 turns center tapped 48 AWG 1300 strands litz wire Core Philips 3F3 4312 020 4124 Bobbin Philips 4322 021 3525 Primary Leakage Inductance 1 0 H μ T2 All windings 8 turns 36 AWG Core Philips 3F3 EP7 3F3 Bobbin Philips EP7PCB1 6 T3 Coilcraft D1870 100 turns L1 2 turns 48 AWG 1300 st...

Page 14: ...MC34067 MC33067 http onsemi com 14 5 0 Bottom View Figure 23 Printed Circuit Board and Component Layout Top View 3 875 Downloaded from Elcodis com electronic components distributor ...

Page 15: ...ROUNDED CORNERS OPTIONAL A B F C S H G D J L M 16 PL SEATING 1 8 9 16 K PLANE T M A M 0 25 0 010 T DIM MIN MAX MIN MAX MILLIMETERS INCHES A 0 740 0 770 18 80 19 55 B 0 250 0 270 6 35 6 85 C 0 145 0 175 3 69 4 44 D 0 015 0 021 0 39 0 53 F 0 040 0 70 1 02 1 77 G 0 100 BSC 2 54 BSC H 0 050 BSC 1 27 BSC J 0 008 0 015 0 21 0 38 K 0 110 0 130 2 80 3 30 L 0 295 0 305 7 50 7 74 M 0 10 0 10 S 0 020 0 040 0...

Page 16: ...ense under its patent rights nor the rights of others SCILLC products are not designed intended or authorized for use as components in systems intended for surgical implant into the body or other applications intended to support or sustain life or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur Should Buyer purc...

Reviews: