background image

S-AD-M-005
Chapter 1:  System Overview

January 2006—Page  of 35

2

Ya. B. Zel’dovich and Yu. P. Raizer, “Thermal Radiation and Radiant Heat Exchange in a Medium,” in Physics of Shock 
Waves and High-Temperature Hydrodynamic Phenomena, edited by W. D. Hayes and R. F. Probstein (Academic Press, 
New York, 1966), Chap. II, Vol. I, pp. 107–175.

(a) 

A strong shock wave may be sent through a sample using the long-pulse UV beams. This 
method is extensively used for EOS experiments but it allows one to access points on the 
principal Hugoniot only.

(b) 

Isentropic (shockless) compression can be achieved with a carefully shaped pressure drive 
coupled to the appropriate target design. This method permits access to the high-density, 
low-temperature region of phase space that is of special relevance for geophysical and 
planetary science problems and the study of metallic hydrogen. 

(c) 

The target may be heated isochorically by penetrating radiation, with little decompression, 
to access the solid-density, high-temperature, high-pressure region of phase space. The 
penetrating radiation can be hard x rays, fast electrons, or fast protons produced during 
the interaction of a short, high-intensity laser pulse with matter, or thermal conduction 
resulting from ultrafast-laser absorption in the plasma corona. This method allows the 
opacities of partially and fully degenerate matter (warm dense matter) to be studied. 

1.1..1  Equation of State Measurements of Materials

Knowledge of the EOS of materials, including those used in above ground experiments (AGEX), is 

of paramount importance to the SSP. Many conditions of interest require shock waves driven at megabar 
pressures, and the EOS of materials at these pressures is often unknown. 

The OMEGA EP system will significantly extend the range of conditions and materials that can 

be tested with OMEGA because of the higher laser-driver energy and the increased number of shots 
available. The OMEGA EP target chamber will be configured to accommodate a VISAR

1

 (velocity 

interferometer system for any reflector) diagnostic to determine the EOS and will be compatible with 
the OMEGA planar cryogenic target positioner.

These experiments make use of the “impedance matching” method described in Zel’dovich and 

Raizer.

2

 A reference material with a known EOS is placed next to a material of unknown EOS, and a shock 

wave is propagated from the former material to the latter. Measurements of the shock speeds through the 
two materials allow inference of the pressure and particle velocity in the material of unknown EOS. 

EOS experiments on OMEGA EP will involve the use of all four UV beams to drive a package 

or three UV beams for the drive and one as a backlighter. There is interest in EOS data at pressures 
from kilobars to tens or hundreds of megabars, requiring intensities in the range of 10

11

 to 10

16

 W/cm

2

A nominal 1-mm-diam spot suffices for most of these experiments, but the extreme intensities require 
spots ranging from 0.5 to 3 mm in diameter. Drive pulses are typically square in time and range from 1 
to 10 ns in duration. The packages have various types of shields (typically with a 10-mm diameter). The 
target thicknesses (ablator plus pusher plus sample) are of the order of a few hundred microns, and the 
individual component thicknesses are determined by the shock dynamics (rarefaction and reverberation) 
to produce steady and planar conditions in the sample.  OMEGA EP will allow for the use of phase 
plates, although none are included in the baseline project.

1

Note that VISAR is not a baseline diagnostic for OMEGA EP, but it could be implemented.

Summary of Contents for Volume VII-System Description

Page 1: ...m 6 1 1 3 2 1 Intensity Scaling of Hot Electron Energy 6 1 1 3 2 2 Electron Beam Transport 6 1 1 4 SSP Related High Energy Density Physics 6 1 1 4 1 Equation of State Measurements of Materials 7 1 1 4...

Page 2: ...Structure 23 1 6 Timing Systems 24 1 7 Optical Alignment 26 1 8 Laser Diagnostics 29 1 8 1 Infrared Diagnostic Package IRDP 29 1 8 2 Short Pulse Diagnostics Package SPDP 29 1 8 3 Ultraviolet Diagnosti...

Page 3: ...irected into the OMEGA EP chamber with each beam capable of being operated in long pulse UV mode with independent temporal pulse shapes and pulse widths up to 10 ns It is also possible to send two com...

Page 4: ...nsity laser target interactions of the target improves with increased electrical conductivity No experiment to date has a target with conductivity within an order of magnitude of that of a DT plasma F...

Page 5: ...ts at 48 relative to the hohlraum axis allow the beams to be incident at an optimum angle for coupling to the hohlraum walls The 48 beam cone and options such as frequency converting the beams to 2 pr...

Page 6: ...hting with conventional OMEGA and NIF beams It will allow dedicated backlighting beams in both the OMEGA and OMEGA EP target chambers The short pulse capability of illuminating targets at 1020 W cm2 a...

Page 7: ...e full NIF but more than OMEGA possible and may relax requirements on efficiency and drive symmetry Fast ignition can also be used with drivers such as ion beam or Z pinch radiation sources that can c...

Page 8: ...on density nc contour for 1 nm light has a 430 nm radius while the 10 nc contour has a 150 nm radius From this approximate characterization of the radial density profile it is clear that the propagati...

Page 9: ...en unknown The OMEGA EP system will significantly extend the range of conditions and materials that can be tested with OMEGA because of the higher laser driver energy and the increased number of shots...

Page 10: ...on of 10 ps minimizes the hydrodynamic expansion of the sample and makes the heating close to isochoric It will be possible to study the opacities of warm dense matter using diagnostic techniques such...

Page 11: ...ne story high 14 ft concrete box beam which serves as a rigid optical table The first and second floors of the structure serve as the optical table and are 30 in thick concrete slabs The lower floor r...

Page 12: ...ed using optical parametric chirped pulse amplification OPCPA The injected pulse passes through the booster amplifier and is reflected off the fold mirror to the polarizer POL1 and into the main ampli...

Page 13: ...port H7 where an off axis f 1 8 parabolic mirror focuses them onto the target The focal spot can be shifted to any location within 1 cm of the center of the chamber to provide for flexible backlighti...

Page 14: ...mance limited by the damage threshold of the multilayer dielectric reflection gratings The use of improved grating technology provides up to 2 6 kJ of laser energy per beam The pulse width of Beam 2 w...

Page 15: ...ively assumed to be 85 The calculations used for Table 1 3 assume low risk existing technologies and demonstrated UV damage fluences for optical coatings In spite of the de rating of OMEGA EP energies...

Page 16: ...mplifier This OPCPA stage is critical to the performance of the short pulse beams Attractive features of OPCPA include a broad gain bandwidth high gain in a short optical path and reduced amplified sp...

Page 17: ...cy chirped The OPCPA pump laser starts with the same components as the long pulse beam up to and including the spatial shaping stage It also includes a high repetition rate 5 Hz crystal large aperture...

Page 18: ...modulator The pulse is further amplified in a glass amplifier before injection into the transport spatial filter of the beamlines The optical image plane of the LP apodizer is relayed throughout the...

Page 19: ...a diagnostic beamsplitter mirror DBS to provide a path to beam diagnostics and alignment packages In both the cavity and transport spatial filters the beam passes through a different pinhole on each p...

Page 20: ...in Fig 1 7 For short pulse experiments Beam 1 or Beam 2 may be routed to the upper or lower compressor in the GCC where four matched MLD tiled grating assemblies temporally compress the pulse A defor...

Page 21: ...pper compressor Lower compressor GCC VW DM DM BC Beamline 1 Beamline 2 Beamline 3 Beamline 4 From transport spatial filters FCC s 2 3 b e a m 4 8 b e a m Short pulse IR path default configuration To O...

Page 22: ...roduced just before the FCC s with the periscope mirror assembly PMA The placement of the FCC s before the target chamber rather than on the target chamber as in the NIF permits more convenient beam d...

Page 23: ...ure 1 9 Illustration of the inner workings of the GCC shows the locations of the TGA s G1 to G4 and the target chamber selection mirror The upper and lower compressors for Beams 1 and 2 are aligned at...

Page 24: ...ation of the upper compressor s optical path including the deformable mirror beam combiner and target chamber selection mirror The diagnostic mirror provides a 1 pickoff for the short pulse diagnostic...

Page 25: ...d in the SPDP table 1 5 3 Target Chamber and Target Area Structure The OMEGA EP target chamber is similar in design to the OMEGA target chamber and has the same 3 3 m diameter The chamber is located w...

Page 26: ...video cameras to capture the laser pulses 2 trigger signals for the electro optical devices that select and shape optical pulses in the laser portion of the system 3 trigger signals for the power cond...

Page 27: ...Shot Executive Shot Director OMEGA Power Conditioning Executive OMEGA EP Power Conditioning Executive Trigger generator selector TG S Reference frequency generator RFG 38 MHz Master timing generator...

Page 28: ...nchronized with each other In the independent mode each system functions as if it had an independent dedicated timing system In the joint mode the critical shot triggers originate from a single source...

Page 29: ...ssor to the short pulse diagnostic package SPDP table completing an alignment handoff with the SPDP ASP The SPDP also contains an alignment laser 1053 and 1047 nm that can be propagated through either...

Page 30: ...the tiles in each tiled grating assembly for each pulse compressor Insertable CAM s located before TGA1 between TGA s 2 and 3 and after TGA4 support alignment of the TGA s A two wavelength Littrow ali...

Page 31: ...tics suite comprised of at least ten individual diagnostic instruments These instruments diagnose the properties of the beams before they are co aligned and exit the GCC The SPDP provides information...

Page 32: ...ror During the alignment process a sample of the alignment beam is directed to the alignment sensor On a shot the 4 sample of the high energy pulse is directed to beam performance diagnostics on the U...

Page 33: ...ann wavefront sensors PEPC grating alignment and a new higher precision timing system etc The Control System architecture has been modified to reflect OMEGA EP as a subservient system to OMEGA when in...

Page 34: ...ds to prepare for the shot When a subsystem has been readied the operator signals the SD using a checklist button on the executive GUI The SD then reviews key details of the setup with the operator be...

Page 35: ...osed access areas during shot operations for safety reasons and to define the staffing requirements The specifics are defined in LFORM referenced above Like OMEGA there are seven shot types used for O...

Page 36: ...nto TSF Viewing Gallery Capacitor Bays Laser Target Bay 5 Charging driver and beam line heads Propagation to beyond stage A Terminates at F ASP s Amplified source injected into TSF Glass amplifier pum...

Page 37: ...EGA Operations page of the LLE Web site This interface consists of a series of pages or screens called forms that collect information of various types The SRF pages for OMEGA EP include General laser...

Page 38: ......

Page 39: ...fast ignitor FOA final optical assembly fs femtosecond FWHM full width at half maximum GCC grating compression chamber GUI graphical user interface HED high energy density HEPW high energy petawatt H...

Page 40: ...erence frequency generator RRM rate regenerator module SAC scanning autocorrelator SD Shot Director SE Shot Executive SHG second harmonic generation SP short pulse SPDP short pulse diagnostic package...

Reviews: