background image

0

9

8

7 6 5 4

3

2

1

0

9

8

7 6 5 4

3

2

1

0

9

8

7 6 5 4

3

2

1

0

9

8

7 6 5 4

3

2

1

AO55

Frequency

Power

Sensor

4-20 mA

UP

DOWN

L

R

SETTINGS, CALIBRATION and FREQUENCY

SETTINGS

Setting Frequency.

  The FMG-1000-MAW converts a train of 

off/on pulses from the flow sensor into a continuous milliAmp 

signal that ranges from 4 mA at zero flow to 20 mA at the desired 

maximum flow. The desired maximum is determined by the user 

and entered as a frequency as follows:

1)

2)

3)

4)

Setting Averaging Time.

  For most applications, this step can 

be ignored, as the standard setting will work fine. However, 

when a particularly steady output signal is desired, or in 

large pipe, a larger averaging period may be desirable. Note 

however that the averaging period requires a tradeoff, since 

a longer averaging period implies a slower response time. If 

steady signal is more important than fast response, increase 

the averaging time as desired. See the diagram below for the 

switch positions and their corresponding times.

Decide what flow rate should represent the top of the 

scale. This is ordinarily the maximum expected flow, or 

a value just above it, in gallons per minute.

Locate the K-factor of the flow sensor (found on the 

meter or fitting, or in the instruction manual, depending 

on meter model). The K-factor is the number of pulses 

the flow sensor produces per gallon of flow.

Calculate frequency, using this formula:

K-Factor  x  Top Flow (GPM) = Frequency

                          60

Enter the frequency using the four rotary Frequency 

switches. Note the decimal point between the third 

and fourth switches.

Checking Calibration

Normally it should not be necessary to check calibration, since 

the digital design of this unit virtually eliminates drift. However, 

there are two types of calibration check that can be performed. 

Look at the diagram below to locate the 4 and 20 mA force 

switches. To force the 4 mA output, put its switch in the up 

position. Check the current output at the Power terminals, and 

if necessary trim to 4.00 mA using the appropriate trimpot. 

Return the switch to the down position, and repeat the process 

with the 20 mA switch.

In an installation with an estimated maximun flow rate 

of about 150 GPM, a flow rate of 170 GPM is selected 

as the full-scale maximum, the flow at which the current 

loop will register 20 mA.

In this example, the K-factor (found on the meter or 

fitting, or in the manual) is  “K = 54.50”.

Calculate the frequency as

0

9

8

7 6 5 4

3

2

1

0

9

8

7 6 5 4

3

2

1

0

9

8

7 6 5 4

3

2

1

0

9

8

7 6 5 4

3

2

1

Power

Sensor

4-20 mA

AO55

Frequency

1

5

4 .

4

Rounding to one decimal point, enter 154.4 on the 

rotary switches by turning the rotary switch pointer to 

the desired digit.

= 154.42

54.50 x 170

             60

SETTING FREQUENCY EXAMPLE

1)

2)

3)

4)

0

9

8

7 6 5 4

3

2

1

0

9

8

7 6 5 4

3

2

1

0

9

8

7 6 5 4

3

2

1

0

9

8

7 6 5 4

3

2

1

AO55

Frequency

Power

Sensor

4-20 mA

4mA Adjust

Force 4 mA

Force 20 mA

20 mA Adjust

S

 

 

Switch Position

 Seconds 

R

 2 

down  down

 4 

down 

up

 8 

up 

down

 16 

up 

up

Summary of Contents for FMG-1000-MAW

Page 1: ...FMG 1000 MAW Blind Analog Transmitter User sGuide Shoponlineat omega com email Info omega com Forlatestproductmanuals omegamanual Info ...

Page 2: ... 78280 Guyancourt France TEL 33 0 1 61 37 2900 FAX 33 0 1 30 57 5427 Toll Free in France 0800 466 342 e mail sales omega fr Germany Austria Daimlerstrasse 26 D 75392 Deckenpfronn Germany TEL 49 0 7056 9398 0 FAX 49 0 7056 9398 29 Toll Free in Germany 0800 639 7678 e mail info omega de United Kingdom One Omega Drive River Bend Technology Centre ISO 9002 Certified Northbank Irlam Manchester M44 5BD ...

Page 3: ...d Supply chart if there is a question regarding voltage vs load A built in power regulator supplies the appropriate power to the flow sensor Typical applications for this transmitter are telemetry or SCADA distributed control systems programmable controllers data logging and chart recording Mounting The FMG 1000 MAW comes with mounting feet and requires four screws to attach it to any stable surfa...

Page 4: ...ncy using this formula K Factor x Top Flow GPM Frequency 60 Enter the frequency using the four rotary Frequency switches Note the decimal point between the third and fourth switches Checking Calibration Normally it should not be necessary to check calibration since the digital design of this unit virtually eliminates drift However there are two types of calibration check that can be performed Look...

Page 5: ...ly TROUBLESHOOTING The FMG 1000 requires a power source of 7 to 26 Vdc at 30 mA max see WARNING The same cable that provides power also serves as a pulse output if needed for remote reading data logging signal conversion or telemetry Orange and Blue Serial Output Do Not Use Green and White Pulse Output 30 Vdc max 10 mA max Red and Black External Power 7 26 Vdc at 30 mA max Drain Connect to earth g...

Page 6: ...NOTES ...

Page 7: ... otherwise shall not exceed the purchase price of the component upon which liability is based In no event shall OMEGA be liable for consequential incidental or special damages CONDITIONS Equipment sold by OMEGA is not intended to be used nor shall it be used 1 as a Basic Component under 10 CFR 21 NRC used in or with any nuclear installation or activity or 2 in medical applications or used on human...

Page 8: ...ne Paddlewheel Systems Totalizers Batch Controllers pH CONDUCTIVITY pH Electrodes Testers Accessories Benchtop Laboratory Meters Controllers Calibrators Simulators Pumps Industrial pH Conductivity Equipment DATA ACQUISITION Data Acquisition Engineering Software Communications Based Acquisition Systems Plug in Cards for Apple IBM Compatibles Datalogging Systems Recorders Printers Plotters HEATERS H...

Reviews: