background image

4.5 Digital Data Output.

input to the evaluation board when evaluating sinusoidal

signals  to  be  sure  there  are  no  unwanted  frequencies

(harmonics  and  noise)  presented  to  the  ADC.  It  is

important  to  realize  that  no  frequency  generator  or

synthesizer  produces  a  pure  enough  sine  wave  to

evaluate  an  A/D  Converter  without  the  use  of  a  good

filter.  If  the  WaveVison4  capture  board  is  used,  a  USB

cable  must  be  connected  between  the  WaveVision4

Capture  Board  and  the  host  computer.  See  the

WaveVision4 Capture Board User's Guide for details.

The  digital  output  data  from  the  DUT  is  available  at

Header  LA1  for  connection  to  a  logic  analyzer.  Data  is

transferred  over  FutureBus  J5  for  use  with  the

WaveVision4 data capture board.

4.6 Power Supply Connections

Power to this board is supplied through power connector

J6. The only Voltage needed for the evaluation board is a

5.5V to +5.7V supply.

5.1 Software Installation

When using this evaluation Board with the WaveVision4

Capture  Board,  the  +5V  logic  power  supply  for  that

Capture board and the +5V of the DUT evaluation board

are connected together through pins A1, B1, A2 and B2

of J2. Diode D1 between P1 and the WaveVision4 board

is meant to prevent the higher voltage at DUT board P1

from  getting  to  the  WaveVision4  board.  Providing  the

+5.5V to +5.7V to the DUT board will p5V to the

WaveVision4  board  through  D1  and  the  WaveVision4

board pins A1, B1, A2 and B2 of J2.

The  WaveVision4  software  provided  requires  about  6

Megabytes  of  hard  drive  space,  including  the  Java  files,

and runs under Windows. See the WaveVision4 Capture

Board Users' Guide for WaveVision4 software installation

instructions.

5.2 Setting up the Evaluation Board

This  evaluation  package  was  designed  to  be  easy  and

simple to use, and to provide a quick and simple way to

evaluate  the  DUT.  The  procedures  given  here  will  help

you to properly set up the board.

4.7 Power Requirements

5.2.1 Board Set-up

Refer to 

Figure 1

 for  locations  of  the  major  components

on the board.

Voltage and current requirements for the DUT Evaluation

Board are

1.

Connect  The  evaluation  board  to  a  WaveVision4

Capture Board, WAVEVSN BRD 4.0.

Pin 1 of P1:  +5.5V to 5.7V at 50 mA

Pin 2 of P1: Ground

2.

Connect  the  desired  jumper  to  JP1,  JP2,  JP3  and

JP4. (See Section 4.8).

4.8 Analog Inputs

3.

Connect  power  to  the  board  per  requirements  of

paragraph 4.7.

The  evaluation  board  input  channel  is  composed  of

termination components and a user choice of a.c. or d.c.

signal  coupling  to  the  DUT,  as  well  as  a  choice  of  DUT

multiplexer inputs that are connected to inputs BNC1 and

BNC2. Short together pins 1 and 2 of JP1 and JP3 to a.c.

couple the  input  signals.  Short  pins  5  and  6  of  JP1  and

JP3 to d.c. couple the input  signal  to  the  DUT.  Shorting

together  pins  3  and  4  of  JP1  or  JP3  will  ground  the

corresponding ADC input.

4.

Connect  a  USB  cable  between  the  WaveVision4

Capture Board and a USB port on your computer.

5.

Connect  a  clean  power  supply  to  the  terminals  of

connector  P1.  Adjust  power  supply  to  a  voltage  of

±5.5V  to  ±5.7V  before  connecting  it  to  the  board.

Apply power to the WaveVision4 Capture Board.

6.

Connect  an  appropriate  test  signal  source  to

connector  BNC1  and/or  BNC2  of  the  evaluation

board through (an) appropriate filter(s).

JP2  and  JP4  determine  which  BNC  connector  is

connected  to  which  ADC  input.  See 

Figure  2

  for  the

device schematic.

5.2.2 Quick Check of Analog Functions

Refer  to 

Figure  1

  for  locations  of  major  components  on

the  board.  If  at  any  time  the  expected  response  is  not

obtained, see section 5.2.5 on Troubleshooting.

Caution:

 Be sure that the input signals to the DUT do

not  go  more  negative  than  -0.3V  or  more  than  0.3V

above the DUT power supply.

1.

Perform steps 1 through 6 of Section 5.2.1.

2.

Adjust  VR1  for  the  desired  DUT  supply  voltage  at

TP1.

5.0 Installing and Using the ADCxx1S101

Evaluation Board

3.

Adjust  VR2  for  a  voltage  at  TP6  and  TP7  that  are

1/2 that at TP1.

The  evaluation  board  requires  a  power  supply  as

described in Section 4.7. An appropriate signal generator

with 50 Ohm source impedance should be connected to

the  Analog  Input  BNC1  and/or  BNC2.  A  bandpass  filter

should be inserted between the generator output and the

4.

Apply  a  signal  to  BNC1  and  scope  TP6  to  be  sure

the input signal is present.

5.

Apply  a  signal  to  BNC2  and  scope  TP7  to  be  sure

the input signal is present.

              

5

          

http://www.national.com

Summary of Contents for ADC082S021

Page 1: ...g to Digital Converters with Input Multiplexer ADC122S101 ADC102S101 ADC082S101 ADC122S051 ADC102S051 ADC082S051 ADC122S021 ADC102S021 ADC082S021 ADC124S101 ADC104S101 ADC084S101 ADC124S051 ADC104S051 ADC084S051 ADC124S021 ADC104S021 ADC084S021 2005 National Semiconductor Corporation 1 http www national com ...

Page 2: ...stalling and Using the ADCxx1S101 Evaluation Board 5 5 1 Software Installation 5 5 2 Setting up the ADCxx1S101 Evaluation Board 5 5 2 1 Board Set up 5 5 2 2 Quick Check of Analog Functions 5 5 2 3 Quick Check of Software and Computer Interface Operation 5 5 2 4 Getting Consistent Readings 6 5 2 5 Troubleshooting 6 6 0 Evaluation Board Specifications 6 7 0 Hardware Schematic 7 8 0 ADCxx1S101 Evalua...

Page 3: ...re also computes and displays dynamic performance in the form of SNR SINAD THD SFDR and ENOB 2 Connect a clean power supply to the terminals of connector P1 Adjust power supply to a voltage of 5 5V to 5 7V before connecting it to the board 3 Connect a voltmeter to TP1 and use VR1 to set the DUT analog supply voltage for the desired value between 2 7V and 5 0V 4 Set the jumper to short pins 1 and 2...

Page 4: ... both through an appropriate filter s These 50 Ohm inputs are intended to accept a low noise sine wave signal of peak to peak amplitude up to the power supply level To accurately evaluate the ADC dynamic performance the input test signal should be a single frequency passed through a high quality band pass filter as described in Section 5 0 VR2 is provided to allow adjustment of the input bias poin...

Page 5: ...nnect The evaluation board to a WaveVision4 Capture Board WAVEVSN BRD 4 0 Pin 1 of P1 5 5V to 5 7V at 50 mA Pin 2 of P1 Ground 2 Connect the desired jumper to JP1 JP2 JP3 and JP4 See Section 4 8 4 8 Analog Inputs 3 Connect power to the board per requirements of paragraph 4 7 The evaluation board input channel is composed of termination components and a user choice of a c or d c signal coupling to ...

Page 6: ...ld not be used for coherent sampling 9 With the mouse you may click on the magnifying glass then and drag top left to bottom right to select a portion of the displayed waveform for better examination 5 2 5 Troubleshooting Nothing happens when F1 is pressed Select Settings then Capture Board Settings and look at the top for Board Properties If you see No WaveVision hardware is present be sure that ...

Page 7: ... of TP1 Be sure that only one clock source oscillator at Y1 or signal at BNC3 is active on the board 6 0 Evaluation Board Specifications Board Size 3 1 x 3 8 8 0 cm x 9 6 cm Power Requirements 5 5V to 5 7 15 mA Clock Frequency Range 1 MHz to 20 MHz Analog Input Nominal Voltage Supply peak to peak Voltage Impedance 50 Ohms 7 http www national com ...

Page 8: ... COUP EEPROM_Power AIN3 JP6 HEADER 3X1 1 2 3 ADC_SCLK ADC_SCLK C19 10uF 6 3V JP1 IN1_SEL 1 3 5 2 4 6 JP2 IN2_CH_SEL 1 2 3 4 5 6 7 8 TPG4 GND 1 C12 10uF 6 3V AIN1 R3 51 1 C18 0 1 uF L2 100 uH Choke ADC_CSb ADC_DIN AIN4 A C COUP TP8 5 5V_IN 1 INPUT2 ADC_CSb 5p5V ADC_DIN ADC_DOUT D C COUP TP4 ADC_DOUT 1 BNC1 INPUT_1 1 2 5p5V AIN2 A C COUP 5V AIN2 TP5 ADC_SCLK 1 ADC_DIN JP5 CLK_ENABLE 1 2 INPUT1 AIN1 ...

Page 9: ... Block DigiKey ED1609 ND 15 2 Q1 Q2 MMBTN3904 SOT 23 Various 16 2 R2 R3 51 1 1 1 8 Watt Size 0603 17 1 R4 0 Size 0603 18 1 R5 1 8k 5 1 10 W Size 0603 19 2 R6 R7 1k 5 1 10 W Size 0603 20 2 VR1 VR2 1k DigiKey 3386F 102 ND 21 0 R8 not used n a 22 5 R9 R10 R11 R12 R13 100 5 1 10 W Size 0603 23 4 R14 R15 R17 R18 5 11K 1 1 10 W Size 0603 24 2 R16 R19 51 5 1 8 W Size 0603 25 1 TP1 TP2 TP3 TP4 TP5 TP6 TP7...

Page 10: ...ound 8 Ground 10 Ground JP1 Input 1 Select Jumper Function none Input 1 not connected to DUT 1 2 Input 1 a c coupled 3 4 Input 1 path grounded 5 6 Input 1 d c coupled JP2 Input 1 Channel Select Jumper Function none Input 1 NOT connected to DUT 1 2 Input 1 connected to IN1 3 4 Input 1 connected to IN2 5 6 Input 1 connected to IN3 ADCxx4Sxx1 only 7 8 Input 1 connected to IN4 ADCxx4Sxx1 only JP3 Inpu...

Page 11: ...on the Evaluation Board Test Point Function TP 1 DUT supply voltage TP 2 ADC CSb TP 3 ADC DIN TP 4 ADC DOUT TP 5 SCLK TP 6 INPUT1 Signal input to DUT TP 7 INPUT2 Signal input to DUT TP 8 Board 5 5V Supply Input voltage TPG1 thru TPG4 Ground J10 FutureBus Connector Pin s Function A1 B1 A2 B2 5V from WaveVision4 Capture Board D2 ADC Serial Clock B3 EEPROM SDA Data C3 EEPROM SCL Clock D3 EEPROM Power...

Page 12: ... can be reasonably expected to result in a significant injury to the user 2 A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness National Semiconductor Corporation Americas Tel 1 800 272 9959 Fax 1 800 737 7018 Email support nsc ...

Page 13: ...for use in safety critical applications such as life support where a failure of the TI product would reasonably be expected to cause severe personal injury or death unless officers of the parties have executed an agreement specifically governing such use Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications and acknowledge and agre...

Reviews: