background image

8

|

ni.com

|

NI 9759 User Manual

The throttle control algorithm involves four major functions:
1.

The angle setpoint (reference), ThetaR is compensated by a user defined lead and lag time. 
These parameters will sharpen or dull the changes in setpoint.

2.

A proportional, integral and derivative action is calculated based on two sets of PID gains, 
above or below the default limp-home region. The reason for two sets of gains is because 
electronic throttle bodies typically have stiffer spring return rates applied to angles below 
the limp-home region.

3.

A limp-home compensation value is added to the PID value to assist with travel through the 
limp-home region. This compensation can minimize the flat control spot often found as the 
throttle plate moves through the limp-home region.

4.

A stiction compensation value is added to the PID value to assist with small error control. 
When the throttle plate approaches the setpoint, stiction in the throttle motor gearing can be 
significant enough such that PID control alone will cause integral overshoot. Stiction 
compensation will apply small alternating forces to assist the PID integral action.

5.

Battery voltage compensation is optionally added to the final output to compensate for 
battery voltage fluctuations away from the nominal voltage.

In general, the final voltage u (V) is a sum of three components and optionally multiplied by a 
battery compensation factor:

u (V) = [PID(V) + Stiction Comp(V) + Limp-Home Comp(V)] × Battery Comp Factor

The first calibration which the user should tune is throttle angle versus sensor voltage. A linear 
equation can be used, as well as a two-point 1D lookup table. 
1.

Manually close the throttle plate completely to determine the minimum sensor voltage. If 
the radii of the throttle body opening and the throttle plate are measured, then the minimum 
throttle angle can be calculated by using an inverse cosine calculation, or by approximating 
the small angle with sine. 

2.

Manually open the throttle plate to wide-open-throttle, noting the maximum sensor voltage. 

3.

Assume the wide-open-throttle angle to be 90 degrees. 

4.

After calibrating for position versus voltage, enter the value for ThetaLH (default 
limp-home position). It is recommended that the sensor voltages entered into the position 
calibration for the upper and lower limits be slightly narrowed so that position control at 
these points does not overwork the driver, trying to achieve positions that are not possible 
as sensing conditions change. Another way to prevent this condition is to limit the setpoint 
range to a small position away from the physical limits.

5.

Implement a filter on throttle position. A second order, lowpass Butterworth filter with a 
cuttoff frequency of 25 Hz is suggested. The filter is most effective during small-error 
control. 

6.

The 

throttle_rt_data_convert_revx.vi

 already implements a 25 Hz filter on the 

analog input voltages. If this VI is used for position, a filter is not required.

7.

Begin control calibration with zero for all Lead/Lag, PID and compensation calibration 
parameters. 

8.

Begin tuning PID gains for angles above ThetaLH. 

Summary of Contents for NI 9759

Page 1: ...cations and Characteristics 11 Introduction The National Instruments 9759 Electronic Throttle Driver Module includes a CompactRIO cRIO module for driving passenger car electronic throttle bodies up to...

Page 2: ...isted below Features 2 Ch H Bridge Drivers for dual electronic throttle control 2 Ch analog input for throttle position feedback Short circuit and over temperature protection with fault reporting Batt...

Page 3: ...module requires a maximum 100 mA from the external supply Driving a single throttle under full load requires a maximum of 60 W peak and 30 W continuous Driving two throttles at full load requires a ma...

Page 4: ...to detection or ID mode H Bridge Drivers The NI 9759 includes a CompactRIO cRIO module for driving passenger car electronic throttle bodies up to 70 mm in diameter A typical example of electronic thro...

Page 5: ...signal is sampled at 2 23 kHz The A D result can be used directly at the FPGA level in ADC counts or at the RT level in converted engineering units The external analog inputs are protected from 6 V t...

Page 6: ...tle Bodies H1B Motor 5 V Out Position Ref High AN1 Position Signal 1 AN2 Position Signal 2 GND Position Ground GND BATT 12 V Battery NEG POS H1A Motor 0 1 2 3 4 5 6 7 8 9 H1B Motor 5 V Out Position Re...

Page 7: ...oltage is applied by means of a PWM duty cycle with battery voltage being the maximum possible voltage The control voltage may be compensated for actual battery voltage if it deviates from the nominal...

Page 8: ...Comp V Battery Comp Factor The first calibration which the user should tune is throttle angle versus sensor voltage A linear equation can be used as well as a two point 1D lookup table 1 Manually clos...

Page 9: ...ions Safety This product meets the requirements of the following standards of safety for electrical equipment for measurement control and laboratory use IEC 61010 1 EN 61010 1 UL 61010 1 CSA 61010 1 E...

Page 10: ...attery If you need to replace it use the Return Material Authorization RMA process or contact an authorized National Instruments service representative For more information about compliance with the E...

Page 11: ...I MAKES NO EXPRESS OR IMPLIED WARRANTIES AS TO THE ACCURACY OF THE INFORMATION CONTAINED HEREIN AND SHALL NOT BE LIABLE FOR ANY ERRORS U S Government Customers The data contained in this manual was de...

Reviews: