background image

LT8708-1

36

Rev 0

D16899-0-6/18(0)

www.analog.com

© ANALOG DEVICES, INC. 2018

RELATED PARTS

TYPICAL APPLICATION

+

+

CSPOUT

CSNOUT

EXTV

CC

VOUTLOMON

FBOUT

INTV

CC

ICN

ICP

GATEV

CC

IMON_ON

IMON_OP

IMON_INP

IMON_INN

CLKOUT

SYNC

SS

RT

V

C

MODE

CSNIN

TG1 BOOST1 SW1 BG1CSP CSN

LT8708

GND BG2 SW2 BOOST2 TG2

CSPIN
V

INCHIP

SHDN

FBIN

VINHIMON

SWEN
LDO33

DIR

RVSOFF

FWD (3V)

RVS (0V)

CSPOUT

CSNOUT

EXTV

CC

INTV

CC

ICN

ICP

GATEV

CC

IMON_ON

IMON_OP

IMON_INP

IMON_INN

CLKOUT

SYNC

SS

RT

V

C

MODE

CSNIN

TG1 BOOST1 SW1 BG1 CSP CSN

LT8708-1

GND BG2 SW2 BOOST2 TG2

CSPIN

V

INCHIP

SHDN

FBIN

VOUTLOMON

FBOUT

VINHIMON

DIR
LDO33

SWEN

RVSOFF

+

+

3.3nF

D

B1

D

B2

TO

LT8708’S

BOOST1

TO

LT8708’S

BOOST2

TO DIODE

 D

B1

LD033

V

BAT2

87081 TA02a

10V 

TO 16V

BATTERY

V

BAT1

24V TO 55V

BATTERY

TO DIODE 

D

B2

LD033

I

OUT

I

IN

M1–M4, M8–M11:  INFINEON BSC010N04LS

C

OUT3

, C

IN3

:  470μF, 50V

C

IN2

, C

IN7

,

 

C

OUT1

, C

OUT5

:  10µF, 50V, X7R

D

B1

, D

B2

, D

B3

, D

B4

:  CENTRAL SEMI CMMR1U-02-LTE

L1, L2:  10μH, COILCRAFT SER2918H-103KL

XOR:   DIODES INC. 74AHC1G86SE-7

M5–M7:  T2N7002AK, TOSHIBA

C

IN4

, C

IN5

,

 

C

OUT6

, C

OUT7

:  SUNCON, 18μF, 40V

40HVP18M

*SEE THE UNI AND 

BIDIRECTIONAL

CONDUCTION 

SECTION OF THE LT8708 

DATA SHEET

D

B3

D

B4

TO

LT8708-1’S 

BOOST1

TO

LT7081’S

BOOST2

TO DIODE

 D

B3

TO DIODE 

D

B4

LD033

LD033

POWER TRANSFER

DECISION LOGIC

100k

16.9k

M6

M5

18.2k

M7

XOR

68.1k

220pF

4.7μF

127k

100k

20k

54.9k

1nF

68nF

10k

365k

1μF

4.7nF

30.1k

47nF

17.4k

4.7nF

22nF

13.3k

200Ω

4.7μF

3.3Ω

4.7μF

100nF

47nF

100Ω

12.1k

133k

12.1k

93.1k

17.8k

C

OUT3

C

OUT2

C

OUT4

×2

C

OUT1

2mΩ

1Ω

0.22μF

M4

M2

M3

L1

10μH

1Ω

1.5mΩ

10Ω

10Ω

1nF

1nF

1Ω

0.22μF

1Ω

M1

C

IN3

C

IN2

C

IN1

C

IN4

×2

5mΩ

1μF

100nF

47nF

100Ω

20k

340k

DIR_CTRL

340k

17.4k

200Ω

4.7nF

17.4k

200Ω

4.7nF

4.7μF

127k

100k

54.9k

470pF

12nF

10k

365k

1μF

4.7nF

17.4k

4.7nF

17.4k

4.7nF

17.4k

4.7μF

3.3Ω

4.7μF

100nF

47nF

100Ω

C

OUT6

C

OUT7

×2

C

OUT5

2mΩ

1Ω

0.22μF

M11

M9

M10

L2, 10μH

1Ω

1.5mΩ

10Ω

10Ω

1nF

1nF

1Ω

0.22μF

1Ω

M8

C

IN7

C

IN6

C

IN5

×2

5mΩ

1μF

100nF

47nF

100Ω

20k

340k

120kHz

17.4k

200Ω

10nF

120kHz

23.7k

3.3nF

PHASE 2

PHASE 3

PHASE 4

**4-PHASE CLOCK 

SIGNALS FROM 

CLOCK CHIP 

SUCH AS LTC6909

CLK1

CLK2

CLK3

CLK4

SEE MORE DETAILS OF THIS APPLICATION ON PAGE 33.

4-Phase 48V to 12V Bidirectional Dual Battery System with FHCM and RHCM

PART NUMBER DESCRIPTION

COMMENTS

LT8708

80V Synchronous 4-Switch Buck-Boost DC/DC 

Controller with Flexible Bidirectional Capability

2.8V (Need EXTV

CC

 > 6.4V) ≤ V

IN

 ≤ 80V, 1.3V ≤ V

OUT

 ≤ 80V, 5mm × 8mm, 

QFN-40

LT8705A

80V V

IN

 and V

OUT

 Synchronous 4-Switch Buck-

Boost DC/DC Controller

2.8V ≤ V

IN

 ≤ 80V, Input and Output Current Monitor, 5mm × 7mm QFN-38 and 

TSSOP-38 Packages

LTC

®

3779

150V V

IN

 and V

OUT

 Synchronous 4-Switch Buck-

Boost Controller

4.5V ≤ V

IN

 ≤ 150V, 1.2V ≤ V

OUT

 ≤ 150V, Up to 99% Efficiency Drives Logic-Level 

or STD Threshold MOSFETs, TSSOP-38 Package

LTC3899

60V, Triple Output, Buck/Buck/Boost Synchronous 

Controller with 29µA Burst Mode I

Q

4.5V (Down to 2.2V after Start-Up) ≤ V

IN

 ≤ 60V, V

OUT

 Up to 60V,  

Buck V

OUT

 Range: 0.8V to 60V, Boost V

OUT

 Up to 60V

LTC3895

LTC7801

150V Low I

Q

, Synchronous Step-Down  

DC/DC Controller with 100% Duty Cycle

4V ≤ V

IN

 ≤ 140V, 150V ABS Max, PLL Fixed Frequency 50kHz to 900kHz,  

0.8V ≤ V

OUT

 ≤ 60V, Adjustable 5V to 10V Gate Drive, I

Q

 = 40μA,  

4mm × 5mm QFN-24, TSSOP-24, TSSOP-38(31) Packages

LTC3871

Bidirectional Multiphase DC/DC Synchronous Buck 

or Boost On-Demand Controller

V

IN

/V

OUT

 Up to 100V, Ideal for High Power 48V/12V Automotive Battery 

Applications

Summary of Contents for Analog Devices LT8708-1

Page 1: ...system The LT8708 1 has the same conduction modes as LT8708 allowing the LT8708 1 to conduct current and power in the same direction s as the master The master controls the overall current and voltag...

Page 2: ...ER 20 Transfer Function CCM 21 Transfer Function DCM HCM and Burst Mode Operation 21 Current Monitoring and Limiting 21 Monitoring IOUT SLAVE 21 Monitoring and Limiting IIN SLAVE 21 Multiphase Clockin...

Page 3: ...to 150 C Note 1 15 16 17 18 TOP VIEW 41 GND UHG PACKAGE 40 LEAD 5mm 8mm PLASTIC QFN TJMAX 150 C JA 36 C W JC 38 C W EXPOSED PAD PIN 41 IS GND MUST BE SOLDERED TO PCB 19 20 21 40 39 38 37 36 35 34 26...

Page 4: ...mV INTVCC Regulator Dropout Voltage VINCHIP VINTVCC IINTVCC 20mA 245 mV LDO33 Pin Voltage 5mA from LDO33 Pin l 3 23 3 295 3 35 V LDO33 Pin Load Regulation ILDO33 0 1mA to 5mA 0 25 1 LDO33 Pin Current...

Page 5: ...0 560 mV ICN Rising Threshold for Enabling Non CCM Offset Current l 680 704 730 mV ICN Falling Threshold for Disabling Non CCM Offset Current l 500 530 560 mV Voltage Regulation Loops Refer to Block D...

Page 6: ...5 20 70 70 25 25 73 75 5 27 5 30 A A A A IMON_INN Output Current VCSNIN VCSPIN 50mV VCSNIN 5V VCSNIN VCSPIN 50mV VCSNIN 5V VCSNIN VCSPIN 5mV VCSNIN 5V VCSNIN VCSPIN 5mV VCSNIN 5V l l 66 65 19 18 70 7...

Page 7: ...ch apply over the specified operating junction temperature range otherwise specifications are at TA 25 C VINCHIP 12V SHDN 3V DIR 3 3V unless otherwise noted Note 3 Note 1 Stresses beyond those listed...

Page 8: ...IOUT A 0 01 0 1 1 10 30 0 10 20 30 40 50 60 70 80 90 100 EFFICIENCY 87081 G02 VIN 16V VOUT 12V HCM DCM CCM VIN 14 5V VOUT 14 5V HCM DCM CCM IOUT A 0 01 0 1 1 10 30 0 10 20 30 40 50 60 70 80 90 100 EFF...

Page 9: ...AT VBAT2 WITH BATTERY DISCONNECTED 500 s DIV 87081 G11 LT8708 IL 10A DIV LT8708 1 IL 10A DIV VBAT1 14 5V VBAT2 REGULATED TO 14 5V LOAD STEP 10A TO 25A LOAD APPLIED AT VBAT2 WITH BATTERY DISCONNECTED...

Page 10: ...to the same voltages as the master LT8708 FBIN Pin 8 VIN Feedback Pin This pin is connected to the input of error amplifier EA3 Typically connect this pin to LDO33 to disable the EA3 FBOUT Pin 9 VOUT...

Page 11: ...NTVCC will be powered from this pin When EXTVCC is lower than 6 4V the INTVCC will be powered from VINCHIP It is recommended to use the same value bypass cap as the master LT8708 CSPOUT Pin 30 The Inp...

Page 12: ...P Pin 38 Average VOUT Current Regulation Pin This pin servos to 1 207V to regulate the average output current based on the ICP and ICN voltages Always connect a 17 4k resistor in parallel with a compe...

Page 13: ...VCC INTVCC EN 1 221V 6 4V RSHDN2 SHDN RSHDN1 3 3V RSENSE CSN CSP SWEN VINCHIP CSNIN CSPIN IMON_INN MODE CLKOUT SYNC RT IMON_INP RVS DIR RVS VC EA5 EA6 EA4 EA3 1 209V IMON_INP EA1 EA8 1 21V IMON_INN 1...

Page 14: ...urrent limits to the system Each LT8708 and LT8708 1 connected in parallel is hereon referred to as a phase the master and slave VIN current is referred to as IIN MASTER and IIN SLAVE respectively For...

Page 15: ...CSNOUT CSPOUT IMON_OP CSPIN CSNIN VINCHIP SYNC RVSOFF ICP ICN DIR SWEN LT8708 1 SLAVE ICN ICP CLK1 CLK2 RVSOFF SWEN FWD 1 6V RVS 1 2 CSNOUT CSPOUT IMON_OP CSPIN CSNIN VINCHIP SYNC RVSOFF ICP ICN DIR S...

Page 16: ...sistor in parallel with a compensation network from this pin to ground on the LT8708 1 The IMON_ON pin is used to monitor the negative IOUT SLAVE The current limiting function of this pin on LT8708 1...

Page 17: ...TCHER DISABLED INTVCC AND LDO33 OUTPUTS ENABLED SWEN AND SS PULLED LOW CHIP OFF SHDN 1 181V OR VINCHIP 2 5V OR TJUNCTION 165 C SWITCHER OFF LDOs OFF SWEN PULLED LOW INTVCC AND GATEVCC 4 81V AND LDO33...

Page 18: ...l error amplifiers EA1 EA6 This allows the average IOUT SLAVE to quickly follow the aver age IOUT MASTER without saturating the slave s regulation loop During soft start the LT8708 1 employs the same...

Page 19: ...lifiers combine to drive VC accord ing to Table 4 with the highest priority being at the top Table 4 Error Amp Priorities TYPICAL CONDITION PURPOSE if IMON_INN 1 21V then VC Rises to Reduce Negative I...

Page 20: ...e transfer functions1 shown in Figure 5 and Figure 6 The currents are measured sensed by the differential CSPOUT CSNOUT pin voltages for each phase and the information is sent from the master to the s...

Page 21: ...r Typically the master is configured to limit its own input current IIN MASTER thus limiting the command current to the slave However since the slave has its own independent input current sensing OPER...

Page 22: ...LT8708 s RSENSE1 value See Configuring the IIN SLAVE Current Limits section for details MULTIPHASE CLOCKING A multiphase application usually has switching regulators operating at the same frequency b...

Page 23: ...rs Connect identical resistor divider networks on SHDN as well as on VINHIMON and VOUTLOMON if used If not used connect VINHIMON to GND and or VOUTLOMON to the LT8708 1 s LDO33 Connect the LT8708 1 s...

Page 24: ...rature ranges Many ceramic capacitors particularly 0805 or 0603 case sizes have greatly reduced capacitance at the desired operating voltage CIN and COUT Selection VIN Capacitance Discontinuous VIN cu...

Page 25: ...the peak total RMS input current in buck operation and the peak total RMS output current in boost operation are reduced linearly inversely proportional to the number of phases used It is important to...

Page 26: ...rent as requested by the master With equal IIN SLAVE and IIN MASTER limits slight output current mismatch and hence slight thermal imbalance can still happen due to device tolerance Bench evaluation s...

Page 27: ...nt sense voltage of V CSPOUT VCSNOUT M 4A 10m 40mV Locate 40mV along the X axis of Figure 11 The corresponding ICP and ICN voltages are 1V and 0V respectively These ICP and ICN voltages are sent from...

Page 28: ...F of capacitance is usually necessary LOOP COMPENSATION To compensate a multiphase system of the LT8708 and LT8708 1 s most of the initial compensation component selection can be done by analyzing the...

Page 29: ...N Pin section for proper ways to connect or drive the SWEN pin in a multiphase system Instead an external comparator chip can be used to mon itor undervoltage conditions and its output drives the comm...

Page 30: ...N_INN selection IMON_INP and IMON_INN are used to provide current limits for the LT8708 1 only They are set to be equal to the maximum per phase VIN current in the forward and reverse direc tions resp...

Page 31: ...3 H WURTH 701014330 XOR DIODES INC 74AHC1G86SE 7 M5 M7 T2N7002AK TOSHIBA C IN4 C IN5 C OUT4 C OUT6 SUNCON 18 F 40V 40HVP18M SEE THE UNI AND BIDIRECTIONAL CONDUCTION SECTION OF THE LT8708 DATA SHEET D...

Page 32: ...tion VBAT1 12V VBAT2 14V IOUT 30A Reverse Conduction VBAT1 12V VBAT2 14V IIN 30A Direction Change with VBAT1 12V VBAT2 12V 3 s DIV 87081 TA03b IL1 AND IL2 10A DIV LT8708 SW1 10V DIV LT8708 1 SW1 10V D...

Page 33: ...74AHC1G86SE 7 M5 M7 T2N7002AK TOSHIBA C IN4 C IN5 C OUT6 C OUT7 SUNCON 18 F 40V 40HVP18M SEE THE UNI AND BIDIRECTIONAL CONDUCTION SECTION OF THE LT8708 DATA SHEET D B3 D B4 TO LT8708 1 S BOOST1 TO LT...

Page 34: ...ange Phase 1 to 4 Inductor Current 56ms DIV 87081 TA04b DIR 5V DIV PHASE 1 IL 20A DIV PHASE 2 IL 20A DIV PHASE 3 IL 20A DIV 2 s DIV 87081 TA04c PHASE 1 TO PHASE 4 IL 5A DIV TYPICAL APPLICATIONS 4 Phas...

Page 35: ...0 R 0 125 TYP UHG QFN 0417 REV A 1 00 TYP 1 00 TYP 0 20 REF DETAIL A 0 40 0 05 0 25 0 05 0 50 BSC 0 00 0 05 0 75 0 05 NOTE 1 ALL DIMENSIONS ARE IN MILLIMETERS ANGLES IN DEGREES 2 COPLANARITY APPLIES T...

Page 36: ...4 2 5m 1 F 100nF 47nF 100 20k 340k DIR_CTRL 340k 17 4k 200 4 7nF 17 4k 200 4 7nF 4 7 F 127k 100k 54 9k 470pF 12nF 10k 365k 1 F 4 7nF 17 4k 4 7nF 17 4k 4 7nF 17 4k 4 7 F 3 3 4 7 F 100nF 47nF 100 COUT6...

Reviews: