background image

LT8708-1

11

Rev 0

For more information 

www.analog.com

BOOST1, BOOST2 (Pin 24, Pin 19): Boosted Floating 

Driver Supply. The (+) terminal of the bootstrap capacitor 

connects here. The BOOST1 pin swings from a diode volt-

age below GATEV

CC

 up to V

IN 

+ GATEV

CC

. The BOOST2 

pin swings from a diode voltage below GATEV

CC

 up to 

V

OUT

 + GATEV

CC

.

TG1, TG2 (Pin 23, Pin 20): Top Gate Drive. Drives the 

top N-channel MOSFETs with voltage swings equal to 

GATEV

CC

 superimposed on the switch node voltages.

SW1, SW2 (Pin 22, Pin 21): Switch Nodes. The (–) ter-

minals of the bootstrap capacitors connect here. 

RVSOFF

 (Pin 25): Reverse Conduction Disable Pin. This 

is an input/output open-drain pin that requires a pull-up 

resistor. Pulling this pin low disables reverse current oper-

ation. Typically, connect this pin to the LT8708’s 

RVSOFF

 

pin. See the Unidirectional and Bidirectional Conduction 

section for more information.
VOUTLOMON (Pin 26): V

OUT

 Low Voltage Monitor 

Pin. Connect a ±1% resistor divider between V

OUT

VOUTLOMON and GND to set an undervoltage level on 

V

OUT

. When V

OUT

 is lower than this level, reverse conduc-

tion is disabled to prevent drawing current from V

OUT

. See 

the Applications Information section for more information. 
VINHIMON (Pin 27): V

IN

 High Voltage Monitor Pin. 

Connect a ±1% resistor divider between V

IN

, VINHIMON 

and GND in order to set an overvoltage level on V

IN

. When 

V

IN

 is higher than this level, reverse conduction is dis-

abled to prevent current flow into V

IN

. See the Applications 

Information section for more information.
ICP (Pin 28): Positive V

OUT

 Current Command Pin. 

The voltage on this pin determines the positive V

OUT

 

current for LT8708-1 to regulate to. Connect this pin 

to LT8708’s ICP pin. See the Applications Information 

section for more information.
EXTV

CC

 (Pin 29): External V

CC

 Input. When EXTV

CC

 

exceeds 6.4V (typical), INTV

CC

 will be powered from this 

pin. When EXTV

CC

 is lower than 6.4V, the INTV

CC

 will be 

powered from V

INCHIP

. It is recommended to use the same 

value bypass cap as the master LT8708.

CSPOUT (Pin 30): The (+) Input to the V

OUT

 Current 

Monitor Amplifier. This pin and the CSNOUT pin measure 

the voltage across the sense resistor, R

SENSE2

, to provide 

the V

OUT

 current signals. It is recommended to use the 

same value R

SENSE2

 between the CSPOUT and CSNOUT 

pins as the master LT8708. See Applications Information 

section for proper use of this pin.
CSNOUT (Pin 31): The (–) Input to the V

OUT

 Current 

Monitor Amplifier. See Applications Information section 

for proper use of this pin.
CSNIN (Pin 32): The (–) Input to the V

IN

 Current Monitor 

Amplifier. This pin and the CSPIN pin measure the volt-

age across the sense resistor, R

SENSE1

, to provide the 

V

IN

 current signals. Connect this pin to V

IN

 when not in 

use. See Applications Information section for proper use 

of this pin.
CSPIN (Pin 33): The (+) Input to the V

IN

 Current 

Monitor Amplifier. Connect this pin to V

IN

 when not 

in use. See Applications Information section for proper 

use of this pin.
V

INCHIP

 (Pin 34): Main Input Supply Pin for the LT8708-1. 

It must be locally bypassed to ground. It is recommended 

to use the same value bypass cap as the master LT8708.
INTV

CC

 (Pin 35): 6.35V Regulator Output. Must be con-

nected to the GATEV

CC

 pin. INTV

CC

 is powered from 

EXTV

CC

 when the EXTV

CC

 voltage is higher than 6.4V, 

otherwise INTV

CC

 is powered from V

INCHIP.

 Bypass this 

pin to ground with a minimum 4.7µF ceramic capacitor. 

It is recommended to use the same value bypass cap as 

the master LT8708.
SWEN (Pin 36): Switching Regulator Enable Pin. Tie high 

through a resistor to enable the switching. Ground to dis-

able switching. This pin is pulled down during shutdown, a 

thermal lockout or when an internal UVLO (Under Voltage 

Lockout) is detected. Do not float this pin. Connect this 

pin to the LT8708’s SWEN pin for synchronized start-up. 

See the Start-Up: SWEN Pin section for more details.

PIN FUNCTIONS

Summary of Contents for Analog Devices LT8708-1

Page 1: ...system The LT8708 1 has the same conduction modes as LT8708 allowing the LT8708 1 to conduct current and power in the same direction s as the master The master controls the overall current and voltag...

Page 2: ...ER 20 Transfer Function CCM 21 Transfer Function DCM HCM and Burst Mode Operation 21 Current Monitoring and Limiting 21 Monitoring IOUT SLAVE 21 Monitoring and Limiting IIN SLAVE 21 Multiphase Clockin...

Page 3: ...to 150 C Note 1 15 16 17 18 TOP VIEW 41 GND UHG PACKAGE 40 LEAD 5mm 8mm PLASTIC QFN TJMAX 150 C JA 36 C W JC 38 C W EXPOSED PAD PIN 41 IS GND MUST BE SOLDERED TO PCB 19 20 21 40 39 38 37 36 35 34 26...

Page 4: ...mV INTVCC Regulator Dropout Voltage VINCHIP VINTVCC IINTVCC 20mA 245 mV LDO33 Pin Voltage 5mA from LDO33 Pin l 3 23 3 295 3 35 V LDO33 Pin Load Regulation ILDO33 0 1mA to 5mA 0 25 1 LDO33 Pin Current...

Page 5: ...0 560 mV ICN Rising Threshold for Enabling Non CCM Offset Current l 680 704 730 mV ICN Falling Threshold for Disabling Non CCM Offset Current l 500 530 560 mV Voltage Regulation Loops Refer to Block D...

Page 6: ...5 20 70 70 25 25 73 75 5 27 5 30 A A A A IMON_INN Output Current VCSNIN VCSPIN 50mV VCSNIN 5V VCSNIN VCSPIN 50mV VCSNIN 5V VCSNIN VCSPIN 5mV VCSNIN 5V VCSNIN VCSPIN 5mV VCSNIN 5V l l 66 65 19 18 70 7...

Page 7: ...ch apply over the specified operating junction temperature range otherwise specifications are at TA 25 C VINCHIP 12V SHDN 3V DIR 3 3V unless otherwise noted Note 3 Note 1 Stresses beyond those listed...

Page 8: ...IOUT A 0 01 0 1 1 10 30 0 10 20 30 40 50 60 70 80 90 100 EFFICIENCY 87081 G02 VIN 16V VOUT 12V HCM DCM CCM VIN 14 5V VOUT 14 5V HCM DCM CCM IOUT A 0 01 0 1 1 10 30 0 10 20 30 40 50 60 70 80 90 100 EFF...

Page 9: ...AT VBAT2 WITH BATTERY DISCONNECTED 500 s DIV 87081 G11 LT8708 IL 10A DIV LT8708 1 IL 10A DIV VBAT1 14 5V VBAT2 REGULATED TO 14 5V LOAD STEP 10A TO 25A LOAD APPLIED AT VBAT2 WITH BATTERY DISCONNECTED...

Page 10: ...to the same voltages as the master LT8708 FBIN Pin 8 VIN Feedback Pin This pin is connected to the input of error amplifier EA3 Typically connect this pin to LDO33 to disable the EA3 FBOUT Pin 9 VOUT...

Page 11: ...NTVCC will be powered from this pin When EXTVCC is lower than 6 4V the INTVCC will be powered from VINCHIP It is recommended to use the same value bypass cap as the master LT8708 CSPOUT Pin 30 The Inp...

Page 12: ...P Pin 38 Average VOUT Current Regulation Pin This pin servos to 1 207V to regulate the average output current based on the ICP and ICN voltages Always connect a 17 4k resistor in parallel with a compe...

Page 13: ...VCC INTVCC EN 1 221V 6 4V RSHDN2 SHDN RSHDN1 3 3V RSENSE CSN CSP SWEN VINCHIP CSNIN CSPIN IMON_INN MODE CLKOUT SYNC RT IMON_INP RVS DIR RVS VC EA5 EA6 EA4 EA3 1 209V IMON_INP EA1 EA8 1 21V IMON_INN 1...

Page 14: ...urrent limits to the system Each LT8708 and LT8708 1 connected in parallel is hereon referred to as a phase the master and slave VIN current is referred to as IIN MASTER and IIN SLAVE respectively For...

Page 15: ...CSNOUT CSPOUT IMON_OP CSPIN CSNIN VINCHIP SYNC RVSOFF ICP ICN DIR SWEN LT8708 1 SLAVE ICN ICP CLK1 CLK2 RVSOFF SWEN FWD 1 6V RVS 1 2 CSNOUT CSPOUT IMON_OP CSPIN CSNIN VINCHIP SYNC RVSOFF ICP ICN DIR S...

Page 16: ...sistor in parallel with a compensation network from this pin to ground on the LT8708 1 The IMON_ON pin is used to monitor the negative IOUT SLAVE The current limiting function of this pin on LT8708 1...

Page 17: ...TCHER DISABLED INTVCC AND LDO33 OUTPUTS ENABLED SWEN AND SS PULLED LOW CHIP OFF SHDN 1 181V OR VINCHIP 2 5V OR TJUNCTION 165 C SWITCHER OFF LDOs OFF SWEN PULLED LOW INTVCC AND GATEVCC 4 81V AND LDO33...

Page 18: ...l error amplifiers EA1 EA6 This allows the average IOUT SLAVE to quickly follow the aver age IOUT MASTER without saturating the slave s regulation loop During soft start the LT8708 1 employs the same...

Page 19: ...lifiers combine to drive VC accord ing to Table 4 with the highest priority being at the top Table 4 Error Amp Priorities TYPICAL CONDITION PURPOSE if IMON_INN 1 21V then VC Rises to Reduce Negative I...

Page 20: ...e transfer functions1 shown in Figure 5 and Figure 6 The currents are measured sensed by the differential CSPOUT CSNOUT pin voltages for each phase and the information is sent from the master to the s...

Page 21: ...r Typically the master is configured to limit its own input current IIN MASTER thus limiting the command current to the slave However since the slave has its own independent input current sensing OPER...

Page 22: ...LT8708 s RSENSE1 value See Configuring the IIN SLAVE Current Limits section for details MULTIPHASE CLOCKING A multiphase application usually has switching regulators operating at the same frequency b...

Page 23: ...rs Connect identical resistor divider networks on SHDN as well as on VINHIMON and VOUTLOMON if used If not used connect VINHIMON to GND and or VOUTLOMON to the LT8708 1 s LDO33 Connect the LT8708 1 s...

Page 24: ...rature ranges Many ceramic capacitors particularly 0805 or 0603 case sizes have greatly reduced capacitance at the desired operating voltage CIN and COUT Selection VIN Capacitance Discontinuous VIN cu...

Page 25: ...the peak total RMS input current in buck operation and the peak total RMS output current in boost operation are reduced linearly inversely proportional to the number of phases used It is important to...

Page 26: ...rent as requested by the master With equal IIN SLAVE and IIN MASTER limits slight output current mismatch and hence slight thermal imbalance can still happen due to device tolerance Bench evaluation s...

Page 27: ...nt sense voltage of V CSPOUT VCSNOUT M 4A 10m 40mV Locate 40mV along the X axis of Figure 11 The corresponding ICP and ICN voltages are 1V and 0V respectively These ICP and ICN voltages are sent from...

Page 28: ...F of capacitance is usually necessary LOOP COMPENSATION To compensate a multiphase system of the LT8708 and LT8708 1 s most of the initial compensation component selection can be done by analyzing the...

Page 29: ...N Pin section for proper ways to connect or drive the SWEN pin in a multiphase system Instead an external comparator chip can be used to mon itor undervoltage conditions and its output drives the comm...

Page 30: ...N_INN selection IMON_INP and IMON_INN are used to provide current limits for the LT8708 1 only They are set to be equal to the maximum per phase VIN current in the forward and reverse direc tions resp...

Page 31: ...3 H WURTH 701014330 XOR DIODES INC 74AHC1G86SE 7 M5 M7 T2N7002AK TOSHIBA C IN4 C IN5 C OUT4 C OUT6 SUNCON 18 F 40V 40HVP18M SEE THE UNI AND BIDIRECTIONAL CONDUCTION SECTION OF THE LT8708 DATA SHEET D...

Page 32: ...tion VBAT1 12V VBAT2 14V IOUT 30A Reverse Conduction VBAT1 12V VBAT2 14V IIN 30A Direction Change with VBAT1 12V VBAT2 12V 3 s DIV 87081 TA03b IL1 AND IL2 10A DIV LT8708 SW1 10V DIV LT8708 1 SW1 10V D...

Page 33: ...74AHC1G86SE 7 M5 M7 T2N7002AK TOSHIBA C IN4 C IN5 C OUT6 C OUT7 SUNCON 18 F 40V 40HVP18M SEE THE UNI AND BIDIRECTIONAL CONDUCTION SECTION OF THE LT8708 DATA SHEET D B3 D B4 TO LT8708 1 S BOOST1 TO LT...

Page 34: ...ange Phase 1 to 4 Inductor Current 56ms DIV 87081 TA04b DIR 5V DIV PHASE 1 IL 20A DIV PHASE 2 IL 20A DIV PHASE 3 IL 20A DIV 2 s DIV 87081 TA04c PHASE 1 TO PHASE 4 IL 5A DIV TYPICAL APPLICATIONS 4 Phas...

Page 35: ...0 R 0 125 TYP UHG QFN 0417 REV A 1 00 TYP 1 00 TYP 0 20 REF DETAIL A 0 40 0 05 0 25 0 05 0 50 BSC 0 00 0 05 0 75 0 05 NOTE 1 ALL DIMENSIONS ARE IN MILLIMETERS ANGLES IN DEGREES 2 COPLANARITY APPLIES T...

Page 36: ...4 2 5m 1 F 100nF 47nF 100 20k 340k DIR_CTRL 340k 17 4k 200 4 7nF 17 4k 200 4 7nF 4 7 F 127k 100k 54 9k 470pF 12nF 10k 365k 1 F 4 7nF 17 4k 4 7nF 17 4k 4 7nF 17 4k 4 7 F 3 3 4 7 F 100nF 47nF 100 COUT6...

Reviews: