M542 Economical Microstepping Driver Manual V1.0
Tel: +086 0755-26434369 5 Web Site:
www.leadshine.com
5. Connecting the Motor
The M542 driver can drive any 2-pahse and 4-pahse hybrid stepping motors.
Connections to 4-lead Motors
4 lead motors are the least flexible but easiest to wire. Speed and torque will depend on winding
inductance. In setting the driver output current, multiply the specified phase current by 1.4 to
determine the peak output current.
Figure 5: 4-lead Motor Connections
Connections to 6-lead Motors
Like 8 lead stepping motors, 6 lead motors have two configurations available for high speed or high
torque operation. The higher speed configuration, or half coil, is so described because it uses one half
of the motor
’
s inductor windings. The higher torque configuration, or full coil, uses the full windings
of the phases.
Half Coil Configurations
As previously stated, the half coil configuration uses 50% of the motor phase windings. This gives
lower inductance, hence, lower torque output. Like the parallel connection of 8 lead motor, the torque
output will be more stable at higher speeds. This configuration is also referred to as half chopper. In
setting the driver output current multiply the specified per phase (or unipolar) current rating by 1.4 to
determine the peak output current.
Figure 6: 6-lead motor half coil (higher speed) connections
Full Coil Configurations
The full coil configuration on a six lead motor should be used in applications where higher torque at
lower speeds is desired. This configuration is also referred to as full copper. In full coil mode, the
M542 Economical Microstepping Driver Manual V1.0
Tel: +086 0755-26434369 6 Web Site:
www.leadshine.com
motors should be run at only 70% of their rated current to prevent over heating.
Figure 7: 6-lead motor full coil (higher torque) connections
Connections to 8-lead Motors
8 lead motors offer a high degree of flexibility to the system designer in that they may be connected
in series or parallel, thus satisfying a wide range of applications.
Series Connections
A series motor configuration would typically be used in applications where a higher torque at lower
speeds is required. Because this configuration has the most inductance, the performance will start to
degrade at higher speeds. In series mode, the motors should also be run at only 70% of their rated
current to prevent over heating.
Figure 8: 8-lead motor series connections
Parallel Connections
An 8 lead motor in a parallel configuration offers a more stable, but lower torque at lower speeds. But
because of the lower inductance, there will be higher torque at higher speeds. Multiply the per phase
(or unipolar) current rating by 1.96, or the bipolar current rating by 1.4, to determine the peak output
current.
Figure 9: 8-lead motor parallel connections
www.yusto.ru