background image

Q3, U5B and CR22 produce a 1mA current source at P1 (Pin 8).  The supply requires a 0

to 5 volt signal to output, zero to full current out.  To get this voltage on Pin 7 (P1), the

1mA  current  source  is  conducted  through  a  0  to  5k  Ohm  pot  to  produce  the  control

voltage.
The protection circuits consist of an ignitor "time out" timer, low voltage inhibit, soft start

timer, interlock and overcurrent detector.  All the protection circuits either allow Q1 to be

turned on, which turns off U7 (thus disabling the PWM) or they keep Q1 off (enabling the

PWM).
The  igniter  "time  out"  timer  consists  of  U1B,  U1A  and  U2.    When  Q1  is  turned  on,  the

output  of  U1B  goes  high.    This  in  turn  charges  C1  through  R1.    If  this  is  allowed  for

sufficient time, C1 will charge to a voltage greater than the 5.1V (REF) and this will cause

U1A to latch on, thus turning on Q1 and disabling the PWM.  During the time that C1 is

being charged, U2  can terminate the time out by  shorting C1.  U2 is turned  on when a

current of greater than 4 Amps is flowing from the output.
The  low  voltage  inhibit  is  made  up  of  U3A.    the  unregulated  +12  volt  supply,  which

represents  line  voltage,  is  attenuated  and  input  to  U3.    this  input  is  compared  to  the

5.1V(REF) and turns on Q1 when the line voltage is below 180 VAC, disabling the PWM.
The soft start circuit (Q2 and U3B) turns on the soft start relay K1.  Q2, which turns on the

relay, is kept biased off until C5 charges to 5.1 volts.  

This  takes  about  10  seconds.

During these 10 seconds, the main filter capacitors' (C1) charging current is limited by the

400 Ohms of R1 for the 10 seconds, then K1 closes, shorting out the limiting resistor.
The interlock circuit is made up of CR12 & 13 and P1 (Pins 1, 9, 3 and 10).  When these

pins are shorted, the input bias to Q1 is disabled, allowing the PWM to operate.
The  over-current  detector,  U4A,  monitors  the  voltage  readback  from  the  shunt.    And,  if

the  voltage  exceeds  5.1  volts,  the  output  of  U4A  is  latched  high  again  turning  on  Q1,

which disables the PWM.

4.4 A200 BUCK CONVERTER

The A200 buck converter can be thought of as a switch connected between E2 and E3.

This switch, in the form of an IGBT transistor, (Q1, 2 and 3) is switched on and off at a 20

kHz rate.  To get more lamp current, the switch is closed longer than normal.  The choke

L2, on the main schematic,  filters the chopped output, caused by the switch opening and

closing,  to produce  pure DC.    For example,  if  the switch  is turned  on  and off  at a  50%

duty cycle, the output DC output voltage will be 1/2 the input DC at E1 and E2.
The switch control signal is fed to the A200 PCB from the A100 via P1.  U1 is an optical

coupler to isolate the control signal.  The output from U1 is amplified by U2 and fed to two

FET's  which  produce  a  bipolar  drive  to  the  transistor  switches  Q1,  Q2  and  Q3.    U3

supplies  the  upward  pull  for  the  gate  drive  and  U4  provides  a    pull  down  to  quickly

discharge  any  input  capacity.    The  output  of  U3  and  U4  is  isolated  by  R9  and  R10  for

Q1.CR10 is a clamp diode to prevent excessive drive.  Like-wise R11 and R12 are for Q2

and etc.
There  are  3  switches  in  parallel  and  for  this,  only  one  will  be  explained.    CR1  is  the

flyback  catch  diode.    CR4,  CR5,  C4  and  R4  are  snubbers  to  help  shape  the  waveform

across the transistor switch for least power dissipation and voltage spikes.  The chokes

L1A, B and C are for balancing the current between the switch transistors.  C10, C1, C2

and C3 are filters for the 20 kHz switching signals.

Page 14 of 18

83-475-001  Rev. D

Summary of Contents for ESKI

Page 1: ...LAMBDA EMI 405 ESSEX ROAD NEPTUNE NJ 07753 TEL 732 922 9300 FAX 732 922 9334 INSTRUCTION MANUAL FOR 83 475 001 Revision D MODEL SERIAL NUMBER...

Page 2: ...3 SIGNAL FLOW SCHEMATIC 01 000 225 13 4 2 POWER FLOW SCHEMATIC 01 475 005 13 4 1 GENERAL 13 4 PRINCIPLES OF OPERATION 7 3 2 MODES OF OPERATION 7 3 1 TURN ON CHECK OUT PROCEDURE 6 3 OPERATING INSTRUCTI...

Page 3: ...power supply reliability Ideally when power supplies are mounted in a rack the rack should have no sides or rear covers Since this is usually not practical or safe the installer must consider the effe...

Page 4: ...phase 47 63 Hz AC INPUT SINGLE PHASE UNIT 208 220 VAC 10 Single Phase 47 63 Hz AC INPUT CURRENT THREE PHASE UNIT 22 Amps per phase for 3 phase power AC INPUT CURRENT SINGLE PHASE UNIT 45 Amps REGULATI...

Page 5: ...primary circuit protection with on off control Current adjustment is via a single 10 turn potentiometer located on the front panel Indication of the output current is provided by an ammeter mounted on...

Page 6: ...Figure 1 Loss Pass Filter Page 4 of 18 83 475 001 Rev D...

Page 7: ...e size should be at least 10 gauge The current input for single phase is rated for 50 Amps and the wire size should be at least 8 gauge The connecting wire size is larger than service rating 2 4 COOLI...

Page 8: ...3 OPERATING INSTRUCTIONS Figure 2 Front Panels Page 6 of 18 83 475 001 Rev D...

Page 9: ...output will occur This is caused by the soft start circuit 3 1 5 The UNIT ON INDICATOR 2 should be on Turn LAMP ON OFF SWITCH 3 on 3 1 6 Advance CURRENT CONTROL 5 slowly The DC VOLTMETER 7 will defle...

Page 10: ...nal 3 2 3 REMOTE PROGRAMMING This supply can be programmed by an external resistance 0 5k Ohms or an external voltage 0 5V The wire connecting the programming terminals of the supply to the remote pro...

Page 11: ...Figure 3 1 Phase Front Panel Control Hookup Page 9 of 18 83 475 001 Rev D...

Page 12: ...on until the external interlock circuit is closed The current and voltage is less than 25 mA and 15 volts The interlock should be connected between Pins 3 10 of P1 When these two Pins are open the pow...

Page 13: ...ored by reading the voltage between Pins 4 2 of P1 This voltage is set for 1 volt 10 Amps when received from the factory and can be loaded with a resistance of 10k Ohms Figure 4 3 Phase External Contr...

Page 14: ...Figure 4A 1 Phase External Control Hookup Page 12 of 18 83 475 001 Rev D...

Page 15: ...which produces the 25kV start pulse 4 3 SIGNAL FLOW SCHEMATIC 01 000 225 The 208 VAC is applied to T3 T4 which reduces the voltage to 15 VAC which is rectified by CR45 CR49 CR47 and filtered by C33 C3...

Page 16: ...interlock circuit is made up of CR12 13 and P1 Pins 1 9 3 and 10 When these pins are shorted the input bias to Q1 is disabled allowing the PWM to operate The over current detector U4A monitors the vo...

Page 17: ...Ohm resistor before any contact with the circuit 5 3 CALIBRATION This procedure applies to the adjustment and calibration of a properly functioning unit only Any malfunction must be corrected before...

Page 18: ...5 3 3 FULL SCALE CURRENT OUTPUT 1 Repeat steps 1 2 and 3 as in paragraph 5 3 1 2 Turn on the front panel current control full CCW 3 The output current should be zero if not adjust R160 for zero curre...

Page 19: ...he front panel control If not check P1 jumpering Q103 U105B and CR122 4 Check voltage between TP111 and TP115 It should be proportional to the 0 to 5 volts of step 3 If not check U110B T102 U106 and U...

Page 20: ...020 Op Amp U101 3 4 5 U109 10 UC3901 64 003 043 IC U106 U111 MOC3041 64 008 007 Opto Isolator U301 2N6348 63 002 001 TRIAC Q301 20 395 000 A100 PC Board A100 53 002 012 MOV 575 VAC TH3 53 002 002 MOV...

Reviews: