224 Appendix D: A Detailed Look at
_
the root
1.0000
is found for initial estimates of 1 and 2. By recognizing
situations in which round-off error may influence the operation of
_
,
you can evaluate the results accordingly and perhaps rewrite the function to
reduce the effects of round-off.
In a variety of practical applications, the parameters in an equation – or
perhaps the equation itself – are merely
approximations.
Physical
parameters have an inherent accuracy (or inaccuracy). Mathematical
representations of physical processes are only models of those processes,
accurate only to the extent that the underlying assumptions are true. An
awareness of these and other inaccuracies can be used to your advantage.
By structuring your subroutine to return a function value of zero when the
calculated value is negligible for practical purposes, you can usually save
considerable time in finding a root with
_
– particularly for cases that
would normally take a long time.
Example:
Ridget hurlers such as Chuck Fahr can throw a ridget to heights
of 105 meters and more. In fact, Fahr’s hurls usually reach a height of
107 meters. How long does it take for his remarkable toss, described on
page 184 in section 13, to reach 107 meters?
Solution:
The desired solution is the value of
t
at which
h =
107
.
Enter the
subroutine from page 184 that calculates the height of the ridget. This
subroutine can be used in a new function subroutine to calculate
f(t)
=
h
(
t
) – 107
.
The following subroutine calculates
f(t)
:
Keystrokes
Display
|
¥
000–
Program mode.
´b
B
001–42,21,12
Begin with new label.
G
A
002– 32 11
Calculates
h
(
t
).
1
003– 1
0
004– 0
7
005– 7
Calculates
h
(
t
) – 107.
-
006– 30
|n
007– 43 32
Summary of Contents for HP-15C
Page 1: ...HP 15C Owner s Handbook HP Part Number 00015 90001 Edition 2 4 Sep 2011 ...
Page 17: ...Part l HP 15C Fundamentals ...
Page 64: ......
Page 65: ...Part ll HP 15C Programming ...
Page 118: ...118 ...