background image

SECTION  V 

THEORY  OF  OPERATION 

5.1  General  Theory  of Operation of Ion  Gauge  Tube  and Controller 

FILAMENT 

GRID 

FIG.  5-1  SCHEMA TIC  OF  COMMON  IG  TUBE 

The  pressure  indication  of  a  Bayard-Alpert  gauge  is  based  on  the  ionization  of  gas 

molecules  by  a  constant  flow  of  electrons.  The  functional  parts  of  the  gauge,  shown 

schematically  in  Fig.  5-1,  are  the  filament,  the  grid,  and  the  collector.  In ionization  gauge 

tubes  as  well  as  some  electronic  vacuum  tubes  the  filament  serves  as  the  cathode  (hot 

cathode)  or emitter.  It's  purpose  is  to  emit  a  stream  of  electrons.  This is accomplished  by 

heating and thereby imparting energy  to  the molecules thus causing electrons to  bet.boiled off. 

The  rate  at  which  electrons move  from the  cathode is dependent on the  filament temperature 

and  grid potential  which  must  both  be  highly  controlled  by the  filament power  supply and  the 

grid bias supply. 

The  grid  (anode)  serves  to  control  the  electron  beam  or  more  accurately  the  speed  of 

the electron.  In the  ion gauge  tube  the  grid  is placed  at  a  positive  voltage  such that most of 

the  electrons  emitted  at  the  filament  are  accelerated  through  the  grid  structure  and into  a 

drift or interaction region which is the  volume surrounding the  collector,  enclosed by  the  grid. 

Since  the  ion  gauge  is  open  to  the  vacuum  system  and  since  vacuum  is the  measure  of 

gas  particles  absence  or  presence  there  will  be  a  varying  density  of  gas  particles  in  the 

electron  interaction  region  depending  on  the  vacuum  pressure.  The  electrons  emitted  from 

the  cathode  will  now  collide  with  the  gas  particles  dislodging  electrons and  producing  ions in 

numbers that  are proportional to the gas  density.  The collector is at a negative potential and 

thus  the  positive ions  are attracted to it  and a  current  (I

+

) is produced also being proportional 

to gas density.  The electrons being negative particles are  attracted  to the grid structure,  this 

current is noted as 1-.  It is these  two  currents  I

and 

which  allows the  precise  measurement 

of the  vacuum.  Through electronic detection and control,  currents are monitored and vacuum 

pressure indicated. 

5-1 

Summary of Contents for 270001 004

Page 1: ...1 H S D ENGINEERING INC 10828 BANCROFT AVE OAKLAND CA 94603 SERIES 270 IONIZATION GAUGE CONTROLLER INSTRUCTION MANUAL GRANVILLE PHILLIPS G1...

Page 2: ...on 1 3 for part number explanations 270001 004 270002 004 270003 003 270004 003 270014 003 270015 003 270016 003 270017 003 270019 003 270020 003 270021 003 270022 003 270038 002 270039 001 270043 101...

Page 3: ...ompany will at its option repair or replace or refund the selling price of an item which proves to be defective during the warranty period provided the item is returned to Granville Phillips Company t...

Page 4: ...for Troubleshooting 6 1 6 3 Input Power Problems 6 3 6 4 Power Supply Problems 6 3 6 5 Filament Turn on and Emission Problems 6 4 6 6 Electrometer Circuit 6 7 6 7 Autoranging Problems 6 8 6 8 Ion Gau...

Page 5: ...d sufficient time to stabilize The thermocouple section is comprised of two independent measuring circuits and when included extend the measurement range of the controller to I Torr or I mbar Indicati...

Page 6: ...mpedance is 2 Kohm 2 0 to 5V corresponding to IV decade of pressure Output impedance is 2 Kohms 0 to 2V corresponding to 0 to I Torr 0 to 1 33 mbar of air output impedance is 1 86 Kohms 1 up 117 FS do...

Page 7: ...rce regulations in order to file a valid claim with the carrier Any damaged material including all containers and packing should be held for carrier inspection Contact our Customer Service Department...

Page 8: ...t the voltage ratio is not changing with time If Voltage shunted 83 or more Voltage unshunted this should prevent the plasma from creating a dangerous voltage between these grounds If more than 10 vol...

Page 9: ...OLLER POWER IS ON EVEN WHEN FILAMENT IS OFF THEREFORE TO ELIMINATE POSSIBILITY OF ELECTRICAL SHOCK MAKE GAUGE CONNECTIONS FIRST Gauge cable assemblies with catalog numbers 270009 270010 and 270041 are...

Page 10: ...HALF NOT 5 IOWN 7YP PLUG SUPPLIED W TflSHELL TO B INSTALLED IN ALL UNVSED CABLE ACCESS HOLES D 0 0 TYP CABLE TIE UP TO 5 PLCS TYP CABLE REF 0 0 c CJ r l 10 FIG 3 3A CONNECTOR PICTORIAL SCREW ZPLCS NU...

Page 11: ...lug The jumper plug is located on the main printed circuit board directly behind the ion gauge panel meter see Fig 6 1 Place the appropriate label supplied over the range units lettering on the front...

Page 12: ...et II I recessed pot for adjusting the set point corresponding to decade and meter reading where the IG process relay II I energizes PC Set 112 recessed pot for adjusting the set point corresponding t...

Page 13: ...he range and autoronge switches until a meter zero is obtained Check the remaining ranges to assure a zero in all ranges 1f 4 5 Ion Gauge Process Control Set Point Adjustment The IG process control fe...

Page 14: ...wed if the system pressure is between 5 x IO 7 Torr Fig 4 3 can be used to control a process where a large pressure rise is expected once the process is initiated In the example shown the process woul...

Page 15: ...l scale Process control is operational only when the autorange switch is on 4 During autorange operation the electrometer will always return to the 10 decade any time the filament relay de energizes 4...

Page 16: ...d grid wire size is increased to maintain a line resistance of less than 06 ohms per lead Consult Granville Phillips for long cables Degas power of 80 watts nominal is available using a 10 foot cable...

Page 17: ...the speed of the electron In the ion gauge tube the grid is placed at a positive voltage such that most of the electrons emitted at the filament are accelerated through the grid structure and into a d...

Page 18: ...0 3 to 1 2 volts depending upon the setting of the emission adjust potentiometer R28 to pin 2 of IC I0 A results in a negative going output from IC I0 A This increases the output of the current source...

Page 19: ...le is less than I x 10 3 Torr Amplifier ICI I is a low drift inverting amplifier with a DC gain of 200 Initial adjustment of the amplifier is made by adjusting R54 for an output of 2 0V de with the 27...

Page 20: ...lorado 80303 Telephone 303 443 7660 Repairs properly made with equivalent electronic parts and rosin core solder which do not damage other portions of the unit do not represent a violation of the warr...

Page 21: ...troller requirements Connect controIler to proper source of power or reset selector switching as shown in Fig 4 2 2 Incorrect fuse rating 3 Defective component of power supply P C board Remove gauge c...

Page 22: ...QII Q 17 and associated components I0 Defective triac SCRI or pulse transformer TI Using an oscilloscope check for firing pulses on SCRl gate to anode I across C23 during period when light is on If p...

Page 23: ...or J3 H I Defective relay K3 Pins 14 and 15 open I Defective emission current amplifier IC I0 B or related circuit component Fig 5 4 6 6 Electrometer Circuit Refer to Fig 5 5 and Fig 6 1 I Zero meter...

Page 24: ...its inoperative 2 One process control circuit inoperative I Normal operation Autoranging switch is in the manual position 2 Defective delay circuit component Ql6 Ql5 R36 R37 or Cl3 Check for 23V de on...

Page 25: ...circuit will not its associated relay 2 One P C circuit will not de energ its associated relay 3 Both P C circuits cannot be set I Defective amplifier IC13 A or B or associated component Check the vo...

Page 26: ...C 27 I I 3 _ 4 cJ h D I cm C 31 1 c21 I U 1 3 B 5 EJ g B R47 cR33 c J 8 n 28 r G t 0 G J I R i T4 Rm r11 n R f CR3 y lJ1 jJ u uz L____ K4 I f 1 p 7 1R53 a C2B l 110 l I I CR 3 5 I r 5 QZ2 I FIG 6 2 C...

Page 27: ...Field effect transistor Selected U235 Protector Surge Voltage RCA SGT03U13 Diodes Zener diode 12Y I OW IN4742A Zener diode 6 0Y I OW 1 Schauer SZ6 0 1 IO mA Zener modified D38W14 Signal diode IN4007 S...

Page 28: ...carbon Resistor Array Resistor Array Resistor Array Resistor Array Resistor Array Resistor Array Resistor Array Resistor Array Pot I0 0 Kohm 20 I OW Switches Switch fil control man SPOT on x mom C K 7...

Page 29: ...Switch power SPOT PCV sit on x on V C K 7101SAV 2Q I IC t s uq A Switch degas DPDT PCV sil on x on C K 720lSAV 2Q L t s w9Av c K I I I s t q r v i 112 Fuses Fuse 1 25 Amp 250V slow blow English Litte...

Page 30: ...I 2 Vo ks s J vi 2 cJ _ e J c r f v l us c l J _ v r L 1 c J l l c u _ _c 1 s V V v _ 1 __ 2 OD U u J J o 0 V O P _ i2t4c J _ C ll l e c Q t _ i _ S L J 0 uc J S t1 oo __ _ _ z_...

Page 31: ...ANGING TO AUTORANGING 7 NOTES 1 ALL RESISTORS IN OHMS SW 5 UULESS OTHERWISE NOTED 2 RESISTOR ARRAYS RA TYPES 118W 3 7 DENOTES SIGNAL GROUND 4 rnDENOTES CHASSIS GROUND 5 DENOTES TEST POINTS 12V 1 _ I C...

Page 32: ...6 RA6 S 22K A40 1M 14 11 6 ICS 14516 UP DOWN COUNTER RESET 12voc _lC18 0 1 FD 1R42 2M Efr_ c L OVDC R41 2M 1 3 4 SEC r C 17 0 1pFD CLOCK U D COUNTER TRUTH TABCE IC4 i PIN i PIN 3 I 4 ii N 1 1 r 0 I 1...

Page 33: ...OENTIFICATION J3 1G ACCESSORY A57 10K 013 A37 100K PROCESS DELAY K 1 2 SK NOTES C13 6S F 23V R39 5K 20 015 012 K2 2 5K PROCESS CONTROL 2 1 ALL RESISTORS ARE IN OHMS 5W 5l UNLESS OTHERWISE NOTED 2 RESI...

Page 34: ...6 7 79 3 __ J6 8 t r 5 NOTE At L REfSt STOR S A E IN OHIVS SV t 5 C Nt ESS OTNERW t SC SPe Cl l D e Pcfi StSTOJ S IN ARRAYS RA TYPES ARE f 8 Iv 3 DEN OTCS S G NAL G 0 IN 7 DE VOTE S CHASS c RO 1 IID C...

Page 35: ...02 FIG 5 8 THERMOCOUPLE SCHEMATIC 5 11 n 004973 103 5 12 r 11 Wl 1 r u 0 ___ __ 4 _ M ll t u a g I 1 I _ rJ t Zi I_ t t...

Reviews: