background image

 

11 

D5014 

- SIL 3 Repeater Power Supply 

G.M. International ISM0103-3 

 

SIL Applications 

D5014S and D5014D Repeater Power Supplies, with Active and Passive Input 

 

• 

Safety function 
The failure behaviour when output current range is 4 to 20 mA is described from the following definitions, which are equal for two different operating mode (active and passive input): 
 

 fail-Safe State: is defined as the output going to fail low or high; 

 

 fail Safe: failure mode that causes the module to go to the defined fail-safe state without a demand from the process; 

 

 fail Dangerous: failure mode that does not respond to a demand from the process (i.e. being unable to go to the defined fail-safe state) or deviates the output current by 

     more than 5 % (0.8 mA) of full span; 
 

 fail High: failure mode that causes the output signal to go above the maximum output current (> 20 mA); 

 

 fail Low: failure mode that causes the output signal to go below the minimum output current (< 4 mA); 

 

 fail “No Effect”: failure mode of a component that is part of the safety function but that has no effect on the safety function or deviates the output current by 

     not more than 5 % (0.8 mA) of full span. For the calculation of the SFF it is considered a safe undetected failure; 
 

 fail “Not part”: failure mode of a component which is not part of the safety function but part of the circuit diagram and is listed for completeness. 

     When calculating the SFF this failure mode is not taken into account. It is also not considered for the total failure rate (safety function) evaluation; 
 

 fail “Not considered”: failure mode not associated to the previous categories and divided in the 50 % safe failures and 50 % dangerous undetected failures. 

Assuming that the application program in the safety logic solver is configured to detected under-range (Low) and over-range (High) failures and does not automatically trip on these 
failures, these failures have been classified as dangerous detected (DD) failures. The following PFDavg values have been calculated for different T[Proof] test intervals using the 
Markov model for 1oo1D architecture system, considering that the safety logic solver can convert the fail dangerous detected to the selected fail-safe state. 
 

• 

The 2 channels of D5014D module could be used to increase the hardware fault tolerance, needed for a higher SIL of a certain Safety Function, as they are completely independent 
each other, not containing common components. In fact, the analysis results got for D5014S (single channel) are also valid for each channel of D5014D (double channel). 
 

• 

Failure rates table: 

Failure category

 

Failure rates (FIT) - Active Input

 

λ

dd

 = Total Dangerous Detected failures = 

λ

dd int.

 + 

λ

high

 + 

λ

low

 151.64 

     

ª

 

λ

dd int.

 = Dangerous Detected failures (detected by diagnostics) 

  20.20 

     

ª

 

λ

high

 = High failures (detected by the logic solver) 

  30.06 

     

ª

 

λ

low

 = Low failures (detected by the logic solver) 

101.38 

λ

du

 = Total Dangerous Undetected failures = 

λ

du int.

 + 50% * 

λ

not considered

 21.44 

     

ª

 

λ

du int.

 = Dangerous Undetected failures  

  21.36 

     

ª

 50% * 

λ

not considered

 = “Not considered” or “undefined” failures 

    0.08 

λ

sd

 = Total Safe Detected failures 

0.00 

λ

su

 = Total Safe Undetected failures = 

λ

no effect

 + 50% * 

λ

not considered

 183.92 

     

ª

 

λ

no effect

 = “No Effect” failures 

183.84 

     

ª

 50% * 

λ

not considered

 = “Not considered” or “undefined” failures 

    0.08 

λ

tot safe

 = 

Total Failure Rate (Safety Function)

 = 

λ

dd

 + 

λ

du

 + 

λ

sd

 + 

λ

su

 

357.00 

λ

not part

 = “Not Part” failures 

5.80 

λ

tot device

 = 

Total Failure Rate (Device)

 = 

λ

tot safe

 + 

λ

not part

 

 

362.80 

MTBF (single channel)

 = 

(1 / 

λ

tot device

)

 + 

MTTR (8 hours)

 

314 years 

Failure rates (FIT) - Passive Input

 

140.70 

  20.20 
  30.24 
  90.26 

20.72 

  20.64 
    0.08 

0.00 

179.58 

179.50 
    0.08 

341.00 

21.80 

362.80 

314 years 

MTTF

S

 (Total Safe) = 1 / (

λ

sd

 + 

λ

su

620 years 

635 years 

MTTF

D

 (Dangerous) = 1 / 

λ

du

 

5324 years 

5509 years 

• 

Failure rates table according to IEC 61508: 

λ

sd

 

λ

su

 

λ

dd

 

λ

du

 

SFF

 

DC

s

 

DC

d

 

0.0 FIT 

183.92 FIT 

151.64 FIT 

21.44 FIT 

93.99% 

0% 

87.61% 

0.0 FIT 

179.58 FIT 

140.70 FIT 

20.72 FIT 

93.92% 

0% 

87.16% 

 

Active Input 

Passive Input 

• 

PFDavg vs T[Proof] table, with determination of SIL supposing module contributes 10% of entire safety function: 

T[Proof] = 1 year

 

T[Proof] = 10 years

 

PFDavg = 9.39 E-05

 

Valid for 

SIL 3

 

PFDavg = 9.39 E-04

 

Valid for 

SIL 2

 

PFDavg = 9.08 E-05

 

Valid for 

SIL 3

 

PFDavg = 9.08 E-04

 

Valid for 

SIL 2

 

 

Active Input 

Passive Input 

• 

PFDavg vs T[Proof] table, with determination of SIL supposing module contributes 20% of entire safety function: 

 

T[Proof] = 2 years

 

T[Proof] = 20 years

 

Active Input 

PFDavg = 1.88 E-04

 

Valid for 

SIL 3

 

PFDavg = 1.88 E-03

 

Valid for 

SIL 2

 

Passive Input 

PFDavg = 1.82 E-04

 

Valid for 

SIL 3

 

PFDavg = 1.82 E-03

 

Valid for 

SIL 2

 

Summary of Contents for D5014D

Page 1: ...D5014 SIL 3 Repeater Power Supply G M International ISM0103 3 SIL 3 Repeater Power Supply Hart DIN Rail and Termination Board Models D5014S D5014D D5014S D5014D INSTRUCTION MANUAL INSTRUCTION MANUAL ...

Page 2: ...Vrms on 250 Ω communication load on 0 5 to 2 5 KHz band Frequency response 0 5 to 2 5 KHz bidirectional within 3 dB Hart protocol Performance Ref Conditions 24 V supply 250 Ω load 23 1 C ambient temperature Calibration accuracy 0 1 of full scale Linearity error 0 05 of full scale Supply voltage influence 0 02 of full scale for a min to max supply change Load influence 0 02 of full scale for a 0 to...

Page 3: ...nstallation using standard DIN Rail and plug in terminal blocks with or without Power Bus or customized Termination Boards 250 Vrms Um max voltage allowed to the instruments associated with the barrier Input Ch 1 for 2 wires Transmitters Terminal block connections HAZARDOUS AREA SAFE AREA Input Ch 1 for 2 wires Transmitters or Input Ch 1 for External Powered Transmitters Input Ch 2 for 2 wires Tra...

Page 4: ...for the effective group See parameters indicated in the table below D5014 Terminals Ch1 Ch2 7 8 9 10 Uo Voc 1 1 V Ch1 Ch2 8 11 10 12 Io Isc 92 mA Ch1 Ch2 7 8 9 10 Io Isc 56 mA Ch1 Ch2 8 11 10 12 Po Po 594 mW Ch1 Ch2 7 8 9 10 Po Po 16 mW Ch1 Ch2 8 11 10 12 Ii Imax Pi Pi D5014 Terminals Ch1 Ch2 8 11 10 12 D5014 Associated Apparatus Parameters Cenelec US Ci Ci device C cable IIC A B Co Ca 100 nF Co C...

Page 5: ...cable parameters are unknown the following value may be used Capacitance 180pF per meter 60pF per foot Inductance 0 60µH per meter 0 20µH per foot Must be Hazardous Area Hazardous Locations Device Parameters D5014 Associated Apparatus Parameters Ui Vmax 30 V Uo Voc D5014 Terminals Ch1 Ch2 8 11 10 12 li Imax 128 mA Ch1 Ch2 8 11 10 12 Io Isc Ci 0 nF Li 0 nH Ch1 Ch2 8 11 10 12 Function Diagram HAZARD...

Page 6: ...available for Transmitter Vtx is 14 V at 20 mA input The safety parameters must be changed in Uo Voc 27 V Io Isc 93 mA Po Po 623 mW Terminals 7 10 Uo Voc 27 V Io Isc 93 mA Po Po 623 mW IIC IIB IIA 0 090 0 705 2 330 4 1 16 6 33 2 57 0 228 3 456 6 Group Cenelec Lo Ro µH Ω Lo La mH Co Ca µF I iaD 3 750 0 705 54 5 16 6 749 1 228 3 5 6 1 2 RL mA HHT Source I Out 1 SIL 3 3 4 RL mA Source I Out 2 SIL 3 7...

Page 7: ...µH Ω Lo La mH Co Ca µF I iaD 1000 1000 151 1 46 0 15272 7 4654 5 Connections for Duplication of Active Input Signals Restriction on specifications for external powered Transmitter The safety parameters must be changed in Uo Voc 2 2 V Io Isc 56 mA Po Po 31 mW 5 6 1 2 RL mA Source I 3 4 RL mA Source I 7 11 10 12 8 9 MODEL D5014D Duplicator Termination board connector Power Bus Supply 24 Vdc External...

Page 8: ...nections Identify the number of channels of the specific card e g D5014S is a single channel model and D5014D is a dual channel model the function and location of each connection terminal using the wiring diagram on the corresponding section as an example Connect 24 Vdc power supply positive at terminal 5 and negative at terminal 6 For Model D5014S connect positive output of channel 1 at terminal ...

Page 9: ...ode Ch2 1 5 V on 250 internal shunt Ch1 1 5 V on 250 internal shunt ON ON OFF OFF ON ON ON ON OFF OFF OFF OFF ON ON OFF OFF ON ON ON ON OFF OFF OFF OFF Ω Ω Dip switch configuration An output configuration DIP Switch is located on component side of pcb This switch allows the mA sink or source mode or Volt operating mode configuration 1 2 3 4 ON 4 20 mA Source Mode 1 2 3 4 1 2 3 4 1 2 3 4 4 20 mA Si...

Page 10: ...rent of the repeater reaches that value This tests for possible quiescent current related failures 4 Restore the loop to full operation 5 Remove the bypass from the safety related PLC or restore normal operation This test will detect approximately 99 of possible Dangerous Undetected failures in the repeater Steps Action 1 Bypass the safety related PLC or take other appropriate action to avoid a fa...

Page 11: ... the selected fail safe state The 2 channels of D5014D module could be used to increase the hardware fault tolerance needed for a higher SIL of a certain Safety Function as they are completely independent each other not containing common components In fact the analysis results got for D5014S single channel are also valid for each channel of D5014D double channel Failure rates table Failure categor...

Reviews: