background image

 

The Union Pacific was built as the eastern portion of the 

Transcontinental  Railroad.  The  original  line  was  built  west 
from  Omaha  across  Nebraska  and  Wyoming,  into  Utah  to 
a  meeting  with  the  Central  Pacific  at  Promontory.  Within  a 
few years the junction was moved east to Ogden. In the early 
1900s, the mainline of the Los Angeles and Salt Lake, an UP 
subsidiary, joined the original Overland Route at Ogden. The 
majority of UP’s traffic went through Ogden.
 

The  line  across  the  Nebraska  prairies  from  Omaha  to 

Cheyenne,  Wyoming  had  no  serious  grades  as  it  followed 
the  Platte  River  most  of  the  way.  West  from  Cheyenne,  it 
was a much different story. First, the railroad had to cross the 
Continental  Divide  on  Sherman  Hill.  West  of  Sherman  Hill, 
the railroad encountered several grades near one percent as it 
traversed the Basin and Range country. Eastbound trains faced 
their toughest challenge immediately after leaving Ogden. The 
Echo  Canyon  line  through  the  Wahsatch  Mountains  was  the 
steepest grade on Union Pacific’s part of the Overland Route. 
It  meant  that  most  of  UP’s  eastbound  traffic  had  to  contend 
with the grade.
 

From  1918  through  1924,  UP  acquired  a  group  of  65 

compound  2-8-8-0  locomotives  to  replace  double-headed  2-
8-0s on the grades of Wyoming and Utah. The 2-8-8-0s could 
handle the tonnage, but being compounds with 57-inch driv-
ers, they were not very fast.  2-10-2s, three-cylinder 4-10-2s, 
and the three-cylinder “Union Pacific” type 4-12-2s were also 
used. They could not handle as much tonnage, and the 2-8-8-
0s  remained  the  primary  locomotive  between  Cheyenne  and 
Ogden.  By  the  1930s,  speed  was  becoming  a  much  bigger 
factor,  but  with  the  grades,  pulling  power  was  still  the  most 
important part. UP finally found a solution by splitting the 4-
12-2 design into a simple articulated locomotive. This resulted 
in  the  Challenger  4-6-6-4  locomotives.  Fifteen  Challengers 
were delivered in 1936 and twenty-five more in 1937.
 

The Challengers were much faster than the 2-8-8-0s and 

only marginally less powerful. They were equipped with 69-
inch drivers and designed for 80 miles per hour. The Challeng-
ers were rated at over 5,000 tons across Nebraska and 4,290 
tons  across  Wyoming.    But  on  the  grade  over  the  Wahsatch 
Mountains,  they  were  limited  to  3,100  tons  eastbound.  UP 
wanted  something  that  could  make  the  same  speeds  as  the 

Challengers  and  could  handle  the  same  4,290-ton  trains 
over the Wahsatch without a helper. In 1940, Union Pacific 
President  William  Jeffers  gave  orders  to  the  Department  of 
Research and Mechanical Standards.
 

Formed in 1936, the Department was under the leadership 

of Vice President Otto Jabelmann. The easiest solution was to 
scale up the successful Challenger design by adding another 
pair of drivers to each half of the locomotive making a 4-8-8-
4 design. The task before Jabelmann’s department was to fit 
such a large machine into the real world. To be of any use, 
the new locomotive had to negotiate the existing curves and 
fit within the weight limits of the railroad’s bridges.  

 

They  had  an  advantage  in  that  the  new  locomotive  was 

intended for a limited operating area, where the mainline was 
engineered for high-speed and heavy traffic. The basic Chal-
lenger  design  was  lengthened,  given  a  larger  firebox,  and 
larger  cylinders,  while  the  driver  diameter  was  reduced  one 
inch to 68 inches.  Other changes were the result of improved 
technology  such  as  the  cast  frame  with  integral  cylinders 
instead  of  the  built  up  frames  of  the  Challengers.  Like  the 
Challengers, they were designed to burn the semi-bituminous 
coal  from  Wyoming  mines.    The  tender  used  the  successful 
“centipede” design from the 1939 built 4-8-4s. The coal and 
water  capacity  was  based  on  calculations  of  usage  on  a  run 
through Echo Canyon with yard delays and meets factored in.
 

Not  every  limitation  could  be  overcome.  One  was  the 

length  of  the  locomotive.  The  boiler  overhang  would  have 
resulted in sideswipe collisions on some double track curves.  
These curves were widened a few feet to eliminate that prob-
lem.    The  length  also  meant  the  new  locomotive  was  too 
long for existing turntables, so new 135 foot turntables were 
installed  at  Ogden  and  Green  River,  the  western  and  eastern 
terminals for the planned operation of the new locomotive.
 

In 1941, UP placed an order for twenty 4-8-8-4’s, num-

bers 4000 – 4019, with the American Locomotive Company, 
or  ALCO  as  it  is  better  known.  Each  engine  cost  $265,174.  
According to legend, an unidentified machinist at the ALCO 
plant is responsible for the name “Big Boy”, having written it 
in chalk on a partially complete locomotive. Although there is 
some evidence that UP intended to call it’s newest and largest 
locomotives “Wahsatch” in honor of the grade they were built 
to overcome, the Big Boy name stuck.
 

The first Big Boy, number 4000, was formally accepted 

by the UP at Omaha at 6 P.M.  on September 5, 1941. Traffic 
during World War Two resulted in 5 more Big Boys, numbers 
4020 – 4024, being built in 1944. These were slightly heavier 
due to wartime restrictions of various metals and had a differ-
ent arraignment of boiler tubes and flues.
 

In service, the Big Boys started out on the Ogden to Green 

River segment. A typical freight train powered by a Big Boy 
took four hours to go the 75 miles from Ogden to Evanston, 
Wyoming, consuming 20 tons of coal and 12 to 13 thousand 
gallons  of  water.    Big  Boys  were  also  cleared  to  run  from 

Big Boy Locomotive Weights and Dimensions

4000 - 4019

4020 - 4024

Tractive Effort

137,375 Lbs.

137,375 Lbs.

Cylinders, diameter and stroke (4)

23.75 in. x 32 in.

23.75 in. x 32 in.

Driver diameter

68 in.

68 in.

Grate area

150 sq. ft.

150 sq. ft.

Steam Pressure

300 Psi.

300 Psi.

Total Evaporating Heating Surface 5,889 sq. ft.

5,755 sq. ft.

Superheater Type

Type E

Type A

Superheating Surface

2,466 sq. ft.

2,043 sq. ft.

Total Engine Weight

762,000 Lbs.

772,250 Lbs.

Weight on Drivers

540,000 Lbs.

545,200 Lbs.

Boiler Diameter

95 in.

95 in.

Driving Wheel base (each)

18 ft. 3 in.

18 ft. 3 in.

Driving Wheel base (total)

47 ft. 3 in.

47 ft. 3 in.

Total Engine Wheel base

72 ft. 5 in.

72 ft. 5 in.

Engine Length

85 ft. 9 in.

85 ft. 9 in.

Tender Weight (full load)

427,500 Lbs.

436,500 Lbs.

Tender Coal Capacity (level)

28 tons

28 tons

Tender Water Capacity

24,000 gal.

25,000 gal.

Tender Length

47 ft.

47 ft.

Overall Wheel base

117 ft. 7 in.

117 ft. 7 in.

Overall Length

132 ft. 10in.

132 ft. 10 in.

Total Weight (full load)

1,189,500 Lbs.

1,208,750 Lbs.

Summary of Contents for BIG BOY 4005

Page 1: ...BIG BOY 4 8 8 4...

Page 2: ...Model Page 3 Model Features Page 4 Sound and DCC Features Page 5 Operating the Big Boy Page 6 Lubrication and Maintenance Page 9 CV Charts Page 11 Big Boy Tender Diagrams Page 12 Big Boy Locomotive D...

Page 3: ...for a limited operating area where the mainline was engineered for high speed and heavy traffic The basic Chal lenger design was lengthened given a larger firebox and larger cylinders while the drive...

Page 4: ...capacity Several Big Boys operated for a while from Salt Lake City to Milford Utah to see if their power could ease the traffic crunch Since the LA SL used oil instead of coal a clamshell coal loader...

Page 5: ...direction Front and rear engines cylinders and coupled drive wheel sets both pivot in order to manage 18 radius curves Pilot has open closed positions Coupler pocket can be inserted to mount coupler...

Page 6: ...and enhances the experience of operation You will find that you will no longer run the engine but rather operate it in the context of your layout Whether you are using conventional DC control or a DC...

Page 7: ...the track making sure all wheels are aligned correctly to avoid short circuits which can possibly damage your locomotive circuitry and power pack 4 Turn the switch on the power pack to ON 5 Slowly adj...

Page 8: ...elect the locomotive s direction either with the direction switch on the power pack or by the transmitter 3 Slowly start your locomotive moving by using the power pack s throttle to set desired top vo...

Page 9: ...y Locomotive will operate on any NMRA compatible Digital Command Control DCC system The dual function decoder has the following features Synchronized steam chuff with random sounds 2 amp capacity Prog...

Page 10: ...etergents is not recommended for this purpose as they will have a tendency to mar the finish When not in use it is recommended that the locomotive and tender be stored in the protective sleeve in whic...

Page 11: ...problems when mounted in the rear threaded nut simply mount it to the threaded nut further forward Replacing the Traction Tire or Replacing the Traction Tire Equipped Driver To provide tractive effor...

Page 12: ...umber 32 CV8 R8 Manufacturer ID 143 CV17 Long address upper byte 192 231 192 CV18 Long address lower byte 0 255 3 CV19 Advanced consist address 0 127 0 CV21 When CV21 0 all accessory functions will fo...

Page 13: ...22 323 321 320 312 311 310 319 307 317 316 315 314 306 304 303 302 459 460 377 348 301 349 339 338 337 336 342 341 340 361 344 345 346 343 347 359 358 357 354 353 352 351 350 355 356 334 333 331 332 3...

Page 14: ...330 Tender bottom 1 331 DCC circuit board 1 332 DCC board mounting screw 2 333 Left tool box short 1 334 Left tool box long 1 335 Speaker Housing 1 336 Left tool box medium 1 337 Rear tender ladder 2...

Page 15: ...6 47 49 48 50 51 44 43 42 41 54 55 53 69 68 66 115 67 78 76 64 63 62 65 61 52 58 59 60 56 57 32 37 225 226 30 31 17 LOCOMOTIVE 114 85 83 84 113 112 186 163 162 183 178 70 71 72 74 77 79 80 75 82 81 87...

Page 16: ...2 36 Bell Bracket 1 37 Bell 1 38 Sand Dome Handrail 4 39 Piping D 1 40 Piping 10 1 Item Description QTY 79 Piping 4 1 80 Wire for Piping 4 1 81 Piping 9 1 82 Piping Under Cabin C 5 1 83 Cab Jump Seats...

Page 17: ...ever L 1 216 Brake Cylinder with Lever R 1 217 Side Rod 1 4 218 Side Rod 2 4 219 Washer 1 220 Pilot Handrail Right 1 1 221 Wire 2 for Pilot Handrail 2 222 Small Detail R 1 223 Pilot Handrail Left 1 1...

Page 18: ...Athearn 1550 Glenn Curtiss Street Carson CA 90746 www athearn com...

Reviews: