background image

GOLDBERG AND MÄKIVIRTA

 

OPTIMISED EQUALISATION COMPARISON

 

 

AES 116TH CONVENTION, BERLIN, GERMANY, 2004 MAY 8-11 

also the probable cause for improving performance 
towards larger systems (Figures 4 and 14) shown by a 
similar trend across both equalisation methods. This 
underlines the importance of primarily solving acous-
tical problems by treating the room before trying to 
use equalisers. 

Graphic equalisation can yield a somewhat flatter re-
sponse, but multiple filter bands may be required to 
correct for large features in the response. Some up-
ward deviations in the response, due to resonances or 
constructive interference, cannot be corrected accu-
rately when they do not coincide with the graphical 
equaliser’s centre frequencies. This complexity of 
graphical equalisers makes manual gain setting com-
plex and therefore more prone to operator error. When 
using computerised optimisation, the time to calculate 
a graphical equaliser’s settings was 8-48 times longer 
than the time to select the best room response control 
settings. 

Graphic equalisation achieves LF subband results 
closer to the target. Both equalisation techniques 
achieved a similar improvement in the broadband bal-
ance, which has previously been shown to determine a 
subjective lack of colouration in sound systems.  

 

7. CONCLUSIONS 

The objective of this paper is to compare the perform-
ance of the industry standard 31-band graphic equal-
iser to the room response controls built into active 
loudspeakers. Both equalisation techniques achieved a 
similar improvement in the broadband balance, which 
has previously been shown to determine a subjective 
lack of colouration in sound systems. For all loud-
speaker models pooled together, the room response 
controls improved the RMS deviation from 6.1 dB to 
4.7 dB (improvement 22%), whereas graphic equalisa-
tion improved the RMS deviation to 1.8 dB (im-
provement 70%). The graphical equaliser achieves 
this improvement by using between eight (large loud-
speakers) and ten times (small two-ways) more equali-
sation stages, 8-48 times the optimisation time and 
considerable increases in the financial cost. 

 

8. ACKNOWLEDGEMENTS 

The authors would like to thank Louis Fielder for the 
question in a recent AES Conference in Denmark 
sparking this paper’s content, Mr. Steve Fisher (SCV 
London) for the original inspirational idea for the 
optimiser and some of the measurements used in the 
statistical analysis, Mr. Olli Salmensaari (Finnish 
Broadcasting Corporation) for additional measure-
ments, Mr. Lars Morset (Morset Sound Development) 
and Genelec Oy. 

9. REFERENCES 

[1]

 

Boner C. P. and Boner C. R., “Minimising 

Feedback in Sound Systems and Room Ring Modes 
with Passive Networks,” J. Acoust. Soc. America, vol. 
37, pp. 131-135 (1965 Jan). 

[2]

 

Greiner R. A. and Schoessow M., “Design As-

pects of Graphic Equalisers,” J. Audio Eng. Soc., vol. 
31, pp. 394-407 (1983 Jun). 

[3]

 

Bohn D. A., “Constant-Q Graphic Equalisers,” 

J. Audio Eng. Soc., vol. 34, pp. 611-626 (1986 Sep). 

[4]

 

Bohn D. A., “Operator Adjustable Equalisers: 

An Overview,” Proc. 6th Int. Conf., paper 6-025 (1988 
Apr). 

[5]

 

Martikainen I., Varla A. and Partanen T., “De-

sign of a High Power Active Control Room Monitor”, 
86th Conv. Audio Eng. Soc., preprint 2755, (1989 
Mar). 

[6]

 

Elliott S. J. and Nelson P. A., “Multiple Point 

Equalisation in a Room Using Adaptive Digital Fil-
ters,” 

J. Acoustical Eng. Soc.

, vol. 37 (1989 Nov). 

[7]

 

Genereux R., “Signal Processing Considera-

tions for Acoustic Environment Correction,” 

Proc. UK 

Conf. 1992

, paper DSP-14 (1992 Sep). 

[8]

 

Holman T., “New Factors in Sound for Cinema 

and Television,” J. Audio Eng. Soc., vol. 39, pp. 529-
539 (1991 Jul/Aug). 

[9]

 

Schulein R. B., “In-Situ Measurement and 

Equalisation of Sound Reproduction Systems,” J. Au-
dio Eng. Soc., vol. 23, pp. 178-186 (1975 Apr). 

[10]

 

Staffeldt H. and Rasmussen E., “The Subjec-

tively Perceived Frequency Response in a Small and 
Medium Sized Rooms,” SMPTE J., vol. 91, pp. 638-
643 (1982 Jul). 

[11]

 

Genelec Oy, http://www.genelec.com (2004 

Feb). 

[12]

 

Goldberg A. P., Mäkivirta A., “Automated In-

Situ Frequency Response Optimisation of Active 
Loudspeakers,” presented in 114th Conv. Audio Eng. 
Soc., preprint 5730 (2003 March). 

[13]

 

Goldberg A. P., Mäkivirta A., “Statistical 

Analysis of an Automated In Situ Frequency Response 
Optimisation Algorithm for Active Loudspeakers”, 
proceedings of the 23rd Conf. Audio Eng. Soc., (2003 
May). 

[14]

 

Goldberg A. P., “In-Situ Frequency Response 

Optimisation of Active Loudspeakers”, M.Sc. Thesis, 
Helsinki University of Technology, Department of 
Acoustics and Audio Signal Processing, (2004 Jan). 

[15]

 

Bristow-Johnson, R., “Cookbook formulae for 

audio EQ biquad filter coefficients”, 
www.harmonycentral.com / Computer / Programming/  

Summary of Contents for response controls

Page 1: ...t least 40 years an early example is 1 Equalisation is prevalent in professional sound reproduction such as recording studios mixing rooms and sound rein forcement In situ response equalisation is often im plemented using third octave equalisers which are normally set with the help of real time analysers This measurement and equalisation combination is cheap readily available and a relatively simp...

Page 2: ...tudying the statistical properties of 67 in situ magni tude responses before and after equalisation 2 IN SITU EQUALISATION The room response controls were previously described in 12 14 A constant Q type 31 band DSP graphic equaliser 15 was constructed using bi quadratic transfer functions of the form 2 2 1 1 2 2 1 1 0 1 z a z a z b z b b z H 1 where the scaling of the transfer function is given by...

Page 3: ...sponse control settings were calculated for each loudspeaker response Statis tical data was recorded for each magnitude response measurement before and after equalisation to study how the objective quality was improved Further sta tistical analysis is conducted on all measurements in three frequency bands Table 1 LF MF and HF collectively called subbands and correspond ing roughly to the bandwidth...

Page 4: ...adband balance graphic equalisation is able to correct for local fea tures in the response Figure 7 but only with limited success Resonances due to room modes or construc tive interference due to reflections in the response cannot be corrected accurately when the frequencies do not coincide with the centre frequencies of third octave filter bands A good example of this can be seen at 600 Hz In the...

Page 5: ...evels in Subbands Large Systems 6 4 2 0 2 4 6 8 LF MF HF LF MF HF LF MF HF Original Room Reponse Controls Graphic Equaliser Figure 1 Mean and standard deviation of subband median levels before and after room response control and graphic equalisation 5 2 Graphic Equalisation Appendix D Figures 9 13 depicts the use of the equaliser controls for each loudspeaker group The upper graph a shows how the ...

Page 6: ...ow 0 dB indicates that graphic equalisation achieves a response closer to the target For all loud speaker models pooled together the room response controls improved the RMS deviation from 6 1 dB to 4 7 dB improvement 22 whereas graphic equalisa tion improved the RMS deviation to 1 8 dB im provement 70 The main improvement is seen at low frequencies The better performance by the graphic equaliser i...

Page 7: ...ke to thank Louis Fielder for the question in a recent AES Conference in Denmark sparking this paper s content Mr Steve Fisher SCV London for the original inspirational idea for the optimiser and some of the measurements used in the statistical analysis Mr Olli Salmensaari Finnish Broadcasting Corporation for additional measure ments Mr Lars Morset Morset Sound Development and Genelec Oy 9 REFEREN...

Page 8: ...al Commission Geneva 1995 18 The MathWorks MATLAB Optimisation Toolbox v 2 3 The MathWorks Inc Natick 2003 19 Moore B C J Glasberg B R Plack C J and Biswas A K The shape of the Ear s Temporal Win dow J Acoustical Soc America vol 83 pp 1102 1116 1988 Mar 20 Klark Technik http www klarkteknik com 2004 Feb 21 Toole F E Olive S E The Modification of Timbre by Resonances Perception and Measure ment J A...

Page 9: ... 9 APPENDIX A ROOM RESPONSE CONTROL CASE STUDY STATISTICAL GRAPHS Figure 2 Case study optimisation results using room response control equalisation Figure 3 Case study statistical output box plot histogram and normal probability plot before upper and after lower optimised room response control equalisation ...

Page 10: ...Control Equalisation 15 10 5 0 5 Broad LF MF HF RMS Deviation Change due to Room Response Control Equalisation 15 10 5 0 5 Broad LF MF HF Figure 4 Change in sound level deviation due to Room Response Control equalisation for each subband and the broadband quartile difference and RMS of deviation from the broadband median The error bar indicates the stan dard deviation ALL Small Two way Three way L...

Page 11: ...uency Hz Gain dB Centre Frequency Hz Gain dB Centre Frequency Hz Gain dB Centre Frequency Hz Gain dB 20 1 6 200 0 7 2 000 0 0 20 000 0 0 25 6 6 250 0 0 2 500 0 1 32 7 7 315 0 0 3 150 0 0 40 1 4 400 0 0 4 000 0 0 50 2 1 500 0 2 5 000 0 0 63 8 2 630 1 3 6 300 0 0 80 3 3 800 0 0 8 000 0 0 100 0 0 1 000 0 0 10 000 0 0 125 0 0 1 250 0 0 12 500 0 0 160 0 9 1 600 0 0 16 000 0 0 Use of Graphic Equaliser 1...

Page 12: ...6TH CONVENTION BERLIN GERMANY 2004 MAY 8 11 12 Figure 7 Case study optimisation results using graphical equalisation Figure 8 Case study statistical output box plot histogram and normal probability plot before upper and after lower optimised graphical equalisation ...

Page 13: ...k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 9a Use of the graphic equaliser for small 2 way systems including 0dB settings Use of Graphic Equaliser Small models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 ...

Page 14: ... 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 10a Use of the graphic equaliser for 2 way systems including 0dB settings Use of Graphic Equaliser 2 way models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz...

Page 15: ... 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 11a Use of the graphic equaliser for 3 way systems including 0dB settings Use of Graphic Equaliser 3 way models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz...

Page 16: ... 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 12a Use of the graphic equaliser for large systems including 0dB settings Use of Graphic Equaliser Large Models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz...

Page 17: ...2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 13a Use of the graphic equaliser for all systems including 0dB settings Use of Graphic Equaliser All Models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz L...

Page 18: ...Graphic Equalisation 15 10 5 0 5 Broad LF MF HF RMS Deviation Change due to Graphic Equalisation 15 10 5 0 5 Broad LF MF HF Figure 14 Change in sound level deviation due to graphic equalisation for each subband and the broadband quartile difference and RMS of deviation from the broadband median The error bar indicates the standard deviation ALL Small Two way Three way Large ALL Small Two way Three...

Page 19: ...on Change between Equalisations 15 10 5 0 5 Broad LF MF HF Figure 15 The difference between the change in sound level deviation for the room response control and the graphic equalisation techniques for each subband and the broadband quartile difference and RMS of deviation from the broadband median are plotted A value below 0dB indicates that graphic equalisation achieves a response closer to the ...

Reviews: