background image

GOLDBERG AND MÄKIVIRTA

 

OPTIMISED EQUALISATION COMPARISON

 

 

AES 116TH CONVENTION, BERLIN, GERMANY, 2004 MAY 8-11 

indicated on the graphical output (Figure 2). The con-
trol settings and before and after equalisation re-
sponses are shown. The treble tilt, midrange level and 
bass tilt controls have been set. The equalisation cor-
rects the low frequency alignment and improves the 
linearity across the whole passband. 

Figure 3 in Appendix A shows a statistical analysis of 
the same loudspeaker presented in graphical form. 
The upper three plots were calculated before equalisa-
tion and the lower three plots after equalisation. The 
three types of plot display outliers and percentiles in 
the magnitude value distribution (box plot), the histo-
gram of values, with a 1 dB resolution, and the fit of 
the magnitude values to a normal distribution. These 
plots show that the distribution in the magnitude data 
has been reduced. This is illustrated by the reduced 
range in the box plot and the value histogram and a 
steeper curve in the normal probability plot. The fit to 
a normal distribution is shown but not discussed fur-
ther. The time taken for the optimisation was 2.43 s. 

 

4.2.2. Graphic Equalisation 

Appendix C shows the same case example as above, 
but using a graphic equaliser with settings calculated 
according the algorithm detailed in Section 3.2. The 
settings are shown in Table 2 and plotted in Figure 6. 
The effect on the in-situ response can be seen in 
Figure 7. Most of the equalisation takes place below 
100Hz but some minor adjustment in the in-situ re-
sponse is also made in the midrange to compensate for 
resonances due to room modes or constructive inter-
ference due to reflections. An improved linearity 
across the whole passband is seen and, in particular, 
the low frequency alignment has become better. The 
statistical analysis shown in Figure 8 demonstrates 
that the magnitude distribution has been reduced. This 
is illustrated by the reduced range in the box plot and 
the value histogram, and the steeper curve in the nor-
mal probability plot. The time taken for the optimisa-
tion was 29.66 s. 

 

4.2.3. Equalisation Comparison 

Comparing the two equalisation techniques, the box 
plot, histogram and steeper line in the normal prob-
ability plot all indicate that the distribution of the data 
is smaller when graphic equalisation is used. The 
room response controls do achieve a good broadband 
balance (Figure 2) but the finer detail is not corrected. 

In addition to an improved broadband balance, 
graphic equalisation is able to correct for local fea-
tures in the response (Figure 7) but only with limited 
success. Resonances due to room modes or construc-
tive interference due to reflections in the response 
cannot be corrected accurately when the frequencies 

do not coincide with the centre frequencies of third-
octave filter bands. A good example of this can be 
seen at 600 Hz. 

In the room response control equalisation, bass boost 
caused by soffit mounting the loudspeaker is corrected 
using a single bass tilt filter control set to –8 dB. 
Graphic equalisation requires seven filters for this al-
though better low frequency linearity is seen. It is 
clear that accurately setting a combination of seven 
filters is not a trivial task, especially if time is at a pre-
mium. 

The distribution of the room response control equali-
sation’s magnitude response (Figure 3) differs from 
the graphic equalisation’s magnitude response (Figure 
8). In the latter, there is a skew towards negative val-
ues as only negative gain can be applied to the re-
sponse. In other words, the upward deviations (reso-
nances or constructive interference) are equalised and 
the downward deviations (antiresonances or destruc-
tive interference) are not. 

The graphic equaliser optimisation took 12.2 times 
longer than that for the room response equalisation 
optimisation. 

 

5. RESULTS 

A total of 67 loudspeakers were measured before and 
after equalisation. Of these, 12 were small two-way 
systems, 22 were two-way systems, 30 were three-
way systems and three were large systems. 

 

5.1. Room Response Control Equalisation 

The detailed results of a statistical analysis for the in-
dividual loudspeakers were discussed in detail in [13]. 

The subband median levels (Figure 1) illustrate the 
broadband frequency balance between the subbands. 
Loudspeaker loading from nearby boundaries is re-
flected in the LF subband median level before equali-
sation, especially in the often flush-mounted three-
way and large models. Cancellations from nearby 
boundaries are reflected in the low median value of 
the LF subband of the small two-way and two-way 
systems. 

High median levels in the LF subband are reduced af-
ter equalisation, which indicates that equalisation 
compensates well for the loudspeaker loading, how-
ever cancellations cannot be equalised. Improvements 
in the flatness across subbands of the average subband 
median level demonstrates that equalisation can im-
prove the broadband flatness. The largest improve-
ment is seen in the three-way and large systems. The 
broadband flatness improvement is mainly the result 
of better alignment of the LF subband with the MF 
and HF subbands, and a reduction of variation in the 

Summary of Contents for response controls

Page 1: ...t least 40 years an early example is 1 Equalisation is prevalent in professional sound reproduction such as recording studios mixing rooms and sound rein forcement In situ response equalisation is often im plemented using third octave equalisers which are normally set with the help of real time analysers This measurement and equalisation combination is cheap readily available and a relatively simp...

Page 2: ...tudying the statistical properties of 67 in situ magni tude responses before and after equalisation 2 IN SITU EQUALISATION The room response controls were previously described in 12 14 A constant Q type 31 band DSP graphic equaliser 15 was constructed using bi quadratic transfer functions of the form 2 2 1 1 2 2 1 1 0 1 z a z a z b z b b z H 1 where the scaling of the transfer function is given by...

Page 3: ...sponse control settings were calculated for each loudspeaker response Statis tical data was recorded for each magnitude response measurement before and after equalisation to study how the objective quality was improved Further sta tistical analysis is conducted on all measurements in three frequency bands Table 1 LF MF and HF collectively called subbands and correspond ing roughly to the bandwidth...

Page 4: ...adband balance graphic equalisation is able to correct for local fea tures in the response Figure 7 but only with limited success Resonances due to room modes or construc tive interference due to reflections in the response cannot be corrected accurately when the frequencies do not coincide with the centre frequencies of third octave filter bands A good example of this can be seen at 600 Hz In the...

Page 5: ...evels in Subbands Large Systems 6 4 2 0 2 4 6 8 LF MF HF LF MF HF LF MF HF Original Room Reponse Controls Graphic Equaliser Figure 1 Mean and standard deviation of subband median levels before and after room response control and graphic equalisation 5 2 Graphic Equalisation Appendix D Figures 9 13 depicts the use of the equaliser controls for each loudspeaker group The upper graph a shows how the ...

Page 6: ...ow 0 dB indicates that graphic equalisation achieves a response closer to the target For all loud speaker models pooled together the room response controls improved the RMS deviation from 6 1 dB to 4 7 dB improvement 22 whereas graphic equalisa tion improved the RMS deviation to 1 8 dB im provement 70 The main improvement is seen at low frequencies The better performance by the graphic equaliser i...

Page 7: ...ke to thank Louis Fielder for the question in a recent AES Conference in Denmark sparking this paper s content Mr Steve Fisher SCV London for the original inspirational idea for the optimiser and some of the measurements used in the statistical analysis Mr Olli Salmensaari Finnish Broadcasting Corporation for additional measure ments Mr Lars Morset Morset Sound Development and Genelec Oy 9 REFEREN...

Page 8: ...al Commission Geneva 1995 18 The MathWorks MATLAB Optimisation Toolbox v 2 3 The MathWorks Inc Natick 2003 19 Moore B C J Glasberg B R Plack C J and Biswas A K The shape of the Ear s Temporal Win dow J Acoustical Soc America vol 83 pp 1102 1116 1988 Mar 20 Klark Technik http www klarkteknik com 2004 Feb 21 Toole F E Olive S E The Modification of Timbre by Resonances Perception and Measure ment J A...

Page 9: ... 9 APPENDIX A ROOM RESPONSE CONTROL CASE STUDY STATISTICAL GRAPHS Figure 2 Case study optimisation results using room response control equalisation Figure 3 Case study statistical output box plot histogram and normal probability plot before upper and after lower optimised room response control equalisation ...

Page 10: ...Control Equalisation 15 10 5 0 5 Broad LF MF HF RMS Deviation Change due to Room Response Control Equalisation 15 10 5 0 5 Broad LF MF HF Figure 4 Change in sound level deviation due to Room Response Control equalisation for each subband and the broadband quartile difference and RMS of deviation from the broadband median The error bar indicates the stan dard deviation ALL Small Two way Three way L...

Page 11: ...uency Hz Gain dB Centre Frequency Hz Gain dB Centre Frequency Hz Gain dB Centre Frequency Hz Gain dB 20 1 6 200 0 7 2 000 0 0 20 000 0 0 25 6 6 250 0 0 2 500 0 1 32 7 7 315 0 0 3 150 0 0 40 1 4 400 0 0 4 000 0 0 50 2 1 500 0 2 5 000 0 0 63 8 2 630 1 3 6 300 0 0 80 3 3 800 0 0 8 000 0 0 100 0 0 1 000 0 0 10 000 0 0 125 0 0 1 250 0 0 12 500 0 0 160 0 9 1 600 0 0 16 000 0 0 Use of Graphic Equaliser 1...

Page 12: ...6TH CONVENTION BERLIN GERMANY 2004 MAY 8 11 12 Figure 7 Case study optimisation results using graphical equalisation Figure 8 Case study statistical output box plot histogram and normal probability plot before upper and after lower optimised graphical equalisation ...

Page 13: ...k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 9a Use of the graphic equaliser for small 2 way systems including 0dB settings Use of Graphic Equaliser Small models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 ...

Page 14: ... 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 10a Use of the graphic equaliser for 2 way systems including 0dB settings Use of Graphic Equaliser 2 way models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz...

Page 15: ... 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 11a Use of the graphic equaliser for 3 way systems including 0dB settings Use of Graphic Equaliser 3 way models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz...

Page 16: ... 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 12a Use of the graphic equaliser for large systems including 0dB settings Use of Graphic Equaliser Large Models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz...

Page 17: ...2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 13a Use of the graphic equaliser for all systems including 0dB settings Use of Graphic Equaliser All Models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz L...

Page 18: ...Graphic Equalisation 15 10 5 0 5 Broad LF MF HF RMS Deviation Change due to Graphic Equalisation 15 10 5 0 5 Broad LF MF HF Figure 14 Change in sound level deviation due to graphic equalisation for each subband and the broadband quartile difference and RMS of deviation from the broadband median The error bar indicates the standard deviation ALL Small Two way Three way Large ALL Small Two way Three...

Page 19: ...on Change between Equalisations 15 10 5 0 5 Broad LF MF HF Figure 15 The difference between the change in sound level deviation for the room response control and the graphic equalisation techniques for each subband and the broadband quartile difference and RMS of deviation from the broadband median are plotted A value below 0dB indicates that graphic equalisation achieves a response closer to the ...

Reviews: