background image

GOLDBERG AND MÄKIVIRTA

 

OPTIMISED EQUALISATION COMPARISON

 

 

AES 116TH CONVENTION, BERLIN, GERMANY, 2004 MAY 8-11 

Similar trends are seen for the three-way systems 
(Figure 11) except that the bass reduction averages –3 
to –5 dB and some additional roll-off shape is seen at 
the very lowest frequencies of the loudspeakers. 

As there were only three large system responses 
(Figure 12), all taken from same room, the standard 
deviations indicate the equalisation consistency. 

Across all of the loudspeakers (Figure 13), the general 
trend is a need for approximately 3 dB to 4 dB of bass 
attenuation, 2 dB from 200 Hz to 500 Hz and only 1 
dB above 500 Hz. A 0 to –12 dB gain range is suffi-
cient. Across the whole study, only one of the third-
octave bands inside the optimisation frequency range 
was set to the maximum attenuation, –12 dB. 

The subband median levels (Figure 1) demonstrate 
that a high median level in the LF subband is reduced 
by the equalisation. This indicates that equalisation 
compensates for acoustical loading of the loudspeaker. 
The better match across subbands of the average sub-
band median level demonstrates that equalisation has 
improved the broadband flatness, and the largest im-
provement is seen in the three-way and large systems. 
The broadband flatness improvement is mainly the 
result of better alignment of the LF subband with the 
MF and HF subbands. The equalisation has reduced 
the variation between subbands and also improved the 
broadband flatness of the acoustical response. For all 
loudspeakers pooled together, the equalisation reduces 
the variance in the median level for the LF subband. 

In Figure 14, Appendix E, the results are pooled for 
all products and for each product type. The change in 
quartile difference and RMS deviation for the broad-
band and the subbands is illustrated. For all models, 
the broadband flatness is improved by 4.3 dB and the 
mean reduction in the LF subband RMS deviation im-
provement is 5.9 dB. The graphic equaliser is able to 
compensate, to some extent, the severe anomalies at-
tributable to extremely bad room acoustic conditions 
seen within some of the pre-equalisation responses. 

The average time taken for graphic equalisation 

optimisation is 31.40 s ± 16.64 s. The best case is 
14.61 s and the worst case is 116.29 s. 

 

5.3. Equalisation Comparison 

Appendix F, Figure 15, represents the difference be-
tween the change in sound level deviation due to the 
room response controls and the graphic equalisation 
techniques. For each subband, quartile difference and 
RMS deviation from the median are plotted. A value 
below 0 dB indicates that graphic equalisation 
achieves a response closer to the target. For all loud-
speaker models pooled together, the room response 
controls improved the RMS deviation from 6.1 dB to 
4.7 dB (improvement 22%), whereas graphic equalisa-

tion improved the RMS deviation to 1.8 dB (im-
provement 70%). The main improvement is seen at 
low frequencies. The better performance by the 
graphic equaliser is achieved by using between five 
(large loudspeakers) and ten times (small two-ways) 
more equalisation stages and far longer optimisation 
times. 

The additional time it takes to perform the graphic 

equalisation optimisation compared to room response 
equalisation optimisation is 18.54 ± 8.49 times longer. 
The best case is 8.35 times longer and the worst case 
is 47.97 times longer. 

 

6. DISCUSSION 

The room response controls in active loudspeakers 
implement discrete filter parameter values rather than 
a continuous parameter value range. A 31-band 
graphic equaliser typically allows for control of the 
gain in each of the third-octave centred bands over a 
range of ±12 dB and an overall make-up gain over the 
same range. In this study the gains were constrained to 
a range of 0 to –12 dB and a least squares optimisa-
tion algorithm designed for selecting the optimal set-
tings. 

The statistical analysis of 67 in-situ loudspeaker re-
sponses shows that both equalisation methods achieve 
a smaller RMS deviation from the target response. 
The improvement is limited by the equalisers’ inabil-
ity to correct for narrow-band deviations in a magni-
tude response. There is little improvement in the quar-
tile differences and RMS deviations in the MF and HF 
subbands. This is because room related response 
variations are too narrow band to be corrected by a 
third-octave graphic equaliser or the room response 
control equaliser. The largest improvement is seen in 
the three-way and large systems. This suggests that 
better room acoustics, leading to a reduced loud-
speaker-room interaction, allows the equalisation 
methods to operate more effectively.  

The room response controls in the active loudspeakers 
achieve a good broadband balance but the fine detail 
is not corrected. Correcting fine detail may not be 
very significant because human hearing is more sensi-
tive at detecting wideband imbalances than narrow 
band deviations in the magnitude response [21, 22]. 

In an acoustically good room, the room response con-
trols built into an active loudspeaker allow for good 
control of the broadband balance. A good example of 
this can be seen in averaged median values of the 
large systems (Figure 1) where the three responses 
show good balancing and relatively little variance. 
Even the three-way systems show a balancing within a 
1.5dB window with relatively low variance. This is 

Summary of Contents for response controls

Page 1: ...t least 40 years an early example is 1 Equalisation is prevalent in professional sound reproduction such as recording studios mixing rooms and sound rein forcement In situ response equalisation is often im plemented using third octave equalisers which are normally set with the help of real time analysers This measurement and equalisation combination is cheap readily available and a relatively simp...

Page 2: ...tudying the statistical properties of 67 in situ magni tude responses before and after equalisation 2 IN SITU EQUALISATION The room response controls were previously described in 12 14 A constant Q type 31 band DSP graphic equaliser 15 was constructed using bi quadratic transfer functions of the form 2 2 1 1 2 2 1 1 0 1 z a z a z b z b b z H 1 where the scaling of the transfer function is given by...

Page 3: ...sponse control settings were calculated for each loudspeaker response Statis tical data was recorded for each magnitude response measurement before and after equalisation to study how the objective quality was improved Further sta tistical analysis is conducted on all measurements in three frequency bands Table 1 LF MF and HF collectively called subbands and correspond ing roughly to the bandwidth...

Page 4: ...adband balance graphic equalisation is able to correct for local fea tures in the response Figure 7 but only with limited success Resonances due to room modes or construc tive interference due to reflections in the response cannot be corrected accurately when the frequencies do not coincide with the centre frequencies of third octave filter bands A good example of this can be seen at 600 Hz In the...

Page 5: ...evels in Subbands Large Systems 6 4 2 0 2 4 6 8 LF MF HF LF MF HF LF MF HF Original Room Reponse Controls Graphic Equaliser Figure 1 Mean and standard deviation of subband median levels before and after room response control and graphic equalisation 5 2 Graphic Equalisation Appendix D Figures 9 13 depicts the use of the equaliser controls for each loudspeaker group The upper graph a shows how the ...

Page 6: ...ow 0 dB indicates that graphic equalisation achieves a response closer to the target For all loud speaker models pooled together the room response controls improved the RMS deviation from 6 1 dB to 4 7 dB improvement 22 whereas graphic equalisa tion improved the RMS deviation to 1 8 dB im provement 70 The main improvement is seen at low frequencies The better performance by the graphic equaliser i...

Page 7: ...ke to thank Louis Fielder for the question in a recent AES Conference in Denmark sparking this paper s content Mr Steve Fisher SCV London for the original inspirational idea for the optimiser and some of the measurements used in the statistical analysis Mr Olli Salmensaari Finnish Broadcasting Corporation for additional measure ments Mr Lars Morset Morset Sound Development and Genelec Oy 9 REFEREN...

Page 8: ...al Commission Geneva 1995 18 The MathWorks MATLAB Optimisation Toolbox v 2 3 The MathWorks Inc Natick 2003 19 Moore B C J Glasberg B R Plack C J and Biswas A K The shape of the Ear s Temporal Win dow J Acoustical Soc America vol 83 pp 1102 1116 1988 Mar 20 Klark Technik http www klarkteknik com 2004 Feb 21 Toole F E Olive S E The Modification of Timbre by Resonances Perception and Measure ment J A...

Page 9: ... 9 APPENDIX A ROOM RESPONSE CONTROL CASE STUDY STATISTICAL GRAPHS Figure 2 Case study optimisation results using room response control equalisation Figure 3 Case study statistical output box plot histogram and normal probability plot before upper and after lower optimised room response control equalisation ...

Page 10: ...Control Equalisation 15 10 5 0 5 Broad LF MF HF RMS Deviation Change due to Room Response Control Equalisation 15 10 5 0 5 Broad LF MF HF Figure 4 Change in sound level deviation due to Room Response Control equalisation for each subband and the broadband quartile difference and RMS of deviation from the broadband median The error bar indicates the stan dard deviation ALL Small Two way Three way L...

Page 11: ...uency Hz Gain dB Centre Frequency Hz Gain dB Centre Frequency Hz Gain dB Centre Frequency Hz Gain dB 20 1 6 200 0 7 2 000 0 0 20 000 0 0 25 6 6 250 0 0 2 500 0 1 32 7 7 315 0 0 3 150 0 0 40 1 4 400 0 0 4 000 0 0 50 2 1 500 0 2 5 000 0 0 63 8 2 630 1 3 6 300 0 0 80 3 3 800 0 0 8 000 0 0 100 0 0 1 000 0 0 10 000 0 0 125 0 0 1 250 0 0 12 500 0 0 160 0 9 1 600 0 0 16 000 0 0 Use of Graphic Equaliser 1...

Page 12: ...6TH CONVENTION BERLIN GERMANY 2004 MAY 8 11 12 Figure 7 Case study optimisation results using graphical equalisation Figure 8 Case study statistical output box plot histogram and normal probability plot before upper and after lower optimised graphical equalisation ...

Page 13: ...k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 9a Use of the graphic equaliser for small 2 way systems including 0dB settings Use of Graphic Equaliser Small models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 ...

Page 14: ... 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 10a Use of the graphic equaliser for 2 way systems including 0dB settings Use of Graphic Equaliser 2 way models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz...

Page 15: ... 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 11a Use of the graphic equaliser for 3 way systems including 0dB settings Use of Graphic Equaliser 3 way models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz...

Page 16: ... 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 12a Use of the graphic equaliser for large systems including 0dB settings Use of Graphic Equaliser Large Models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz...

Page 17: ...2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz Level dB Figure 13a Use of the graphic equaliser for all systems including 0dB settings Use of Graphic Equaliser All Models excl 0dB settings 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 2 3 20 25 32 40 50 63 80 100 125 160 200 250 315 400 500 630 800 1k 1 25k 1 6k 2k 2 5k 3 2k 4k 5k 6 3k 8k 10k 12 5k 16k 20k 1 3 Octave Frequency Band Hz L...

Page 18: ...Graphic Equalisation 15 10 5 0 5 Broad LF MF HF RMS Deviation Change due to Graphic Equalisation 15 10 5 0 5 Broad LF MF HF Figure 14 Change in sound level deviation due to graphic equalisation for each subband and the broadband quartile difference and RMS of deviation from the broadband median The error bar indicates the standard deviation ALL Small Two way Three way Large ALL Small Two way Three...

Page 19: ...on Change between Equalisations 15 10 5 0 5 Broad LF MF HF Figure 15 The difference between the change in sound level deviation for the room response control and the graphic equalisation techniques for each subband and the broadband quartile difference and RMS of deviation from the broadband median are plotted A value below 0dB indicates that graphic equalisation achieves a response closer to the ...

Reviews: