background image

MB3891

23

FUNCTIONAL DESCRIPTION

 (1) MAIN UVLO/BACKUP UVLO

Transient power-on surge states or sudden drops in supply voltage (VBAT2) can cause an IC to operate abnor-
mally, leading to destruction or damage to system elements. To prevent this type of fault, the undervoltage lockout
circuits (UVLO/ Backup UVLO) will shut off the output from OUT1 to V-BACKUP if the supply voltage falls below
the UVLO circuit threshold voltage (3.0 V/2.8 V typ.). System operation is restored as soon as the supply voltage
rises above the UVLO circuits threshold voltage (3.2 V typ.).

 (2) LDO1

The LDO1 circuits uses the reference voltage supply and generates an output voltage (2.1 V typ.) at the OUT1
terminal (pin 12,13). Power can be drawn from the OUT1 terminal for external use, up to a maximum load current
of 120 mA.

 (3) XPOWERGOOD (RESET) 

When the OUT1 terminal (pin 12,13) voltage exceeds 2.0 V (typ.), after a delay interval set by a capacitor
(C

DELAYCAP

) connected to the DELAYCAP terminal (pin 18), the XPOWERGOOD terminal (pin 17) goes to “H”

level and resets the microcomputer. At the same time, the LDO2, LDO3, and LDO4 output is controlled ON/OFF.

  (4) LDO2

The LDO2 circuit uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT2
terminal (pin 6,7) when the XPOWERGOOD terminal (pin 17) voltage is at “H” level and an “H” level signal is
input at the CONT2 terminal (pin 16). Power can be drawn from the OUT2 terminal for external use, up to a
maximum load current of 50 mA. 

 (5) General Purpose switches

Any of the OUT terminals can be connected to any SW-INPUT terminal so that when the corresponding SW-
ON terminal is at “H” level, the OUT terminal voltage can be drawn from the associated SW-OUTPUT terminal.

 (6) LDO3

The LDO3 circuits uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT3
terminal (pin 3,4) when the XPOWERGOOD terminal (pin 17) voltage is at “H” level and an “H” level signal is
input at the CONT3 terminal (pin 56). Power can be drawn from the OUT3 terminal for external use, up to a
maximum load current of 100 mA.

 (7) LDO4

The LDO4 circuits uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT4
terminal (pin 40,41) when the XPOWERGOOD terminal (pin 17) voltage is at “H” level and an “H” level signal is
input at the CONT3 terminal (pin 56) , and an “L” level signal is input at the CONT4 terminal (pin 44). When an
“H” level signal is input at the CONT4 terminal, the output voltage at the OUT4 terminal is 2.5 V (typ.). Power
can be drawn from the OUT4 terminal for external use, up to a maximum load current of 100 mA. 

Summary of Contents for MB3891

Page 1: ...3 and 5 Volt technology The circuit contains a charger for a rechargeable Lithium coin cell of a Real Time Clock A complex control circuit is built in to generate main reset and to turn on and off the different LDO s FEATURES Supply voltage range 3 V to 5 5 V Low power consumption current during standby 400 µA MAX 6 channel low saturation voltage type series regulator 2 1 V 2 channels 2 8 V 3 chan...

Page 2: ...GND3 5 OUT2 6 OUT2 7 VBAT1 8 VBAT1 9 VBAT1 10 VBAT1 11 OUT1 12 OUT1 13 CONT1 14 CONT6 15 CONT2 16 32 GND VSIM 31 VCAP 30 VCAP 29 VSIMOUT 28 OSC 27 SIMPROG 26 VSIM ON 25 VCC VSIM 24 REF OUT 23 VFIL 22 VREF 21 V BACKUP 20 VBAT2 19 GND1 18 DELAYCAP 17 XPOWERGOOD 48 SW3 INPUT 47 SW3 OUTPUT 46 SW1 INPUT 45 SW1 OUTPUT 44 CONT4 43 VBAT4 42 VBAT4 41 OUT4 40 OUT4 39 GND4 38 SIM IO 37 CLK 36 RST 35 µP IO 34...

Page 3: ... for rechargeable Lithium coin cell 22 VREF O Supply voltage for Reference 23 VFIL O Reference voltage Filter 24 REF OUT O Reference output voltage Present when BACKUP UVLO is high 25 VCC VSIM Input voltage for charge pump Supplied by VBAT1 26 VSIM ON I VSIM supply Enable Active high 27 SIMPROG I VSIM programming Low 3 V SIM High 5 V SIM 28 OSC Oscillator output pin 29 VSIMOUT O Supply voltage for...

Page 4: ... 3 Source 49 50 N C Non connection 51 SW2 OUTPUT O Output of general purpose switch number 2 Drain 52 SW2 INPUT I Input of general purpose switch number 2 Source 53 SW1 ON I General purpose switch number 1 Enable Active high 54 SW2 ON I General purpose switch number 2 Enable Active high 55 SW3 ON I General purpose switch number 3 Enable Active high 56 CONT3 I OUT3 and OUT4 supply voltage Enable Ac...

Page 5: ...AT1 OUT1 OUT2 SW1 INPUT SW1 OUTPUT SW2 INPUT SW2 OUTPUT SW3 INPUT SW3 OUTPUT VBAT3 OUT3 GND3 VBAT4 OUT4 GND4 V BACKUP XPOWERGOOD DELAYCAP GND1 POR Main UVLO Over Temp Protection LDO1 LDO2 SW1 SW2 SW3 ON OUT ON OUT ON OUT LDO3 ON OUT LDO4 ON OUT LDO5 ON OUT LDO6 CONT4 BACKUP UVLO VREF VREF AMP GSM SIM Logic Level Translation VSIMOUT Charge pump 57 CONT5 56 CONT3 31 VCAP 30 VCAP 59 GND5 58 OUT5 24 R...

Page 6: ...lt in device failure No warranty is made with respect to uses operating conditions or combinations not represented on the data sheet Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand Parameter Symbol Conditions Rating Unit Min Max Power supply voltage VBAT 0 3 7 V VCC VSIM 0 3 7 V LDO regulator IO OUT1 pin 120 mA IO OUT2 pin...

Page 7: ...19 32 59 All circuit s VSIM On Max load on all regulators 10 mA UVLO threshold voltage VTHH 8 9 10 11 20 42 43 60 61 62 OUT1 ON 2 980 3 080 3 180 V VTHL 8 9 10 11 20 42 43 60 61 62 OUT1 OFF 2 780 2 880 2 980 V BACKUP UVLO threshold voltage VTHH 8 9 10 11 20 42 43 60 61 62 V BACKUP ON 2 980 3 080 3 180 V VTHL 8 9 10 11 20 42 43 60 61 62 V BACKUP OFF 2 580 2 680 2 780 V Input voltage VIH 16 56 57 0 ...

Page 8: ... µV XPOWER GOOD RESET Output voltage VOH 17 0 8 OUT1 OUT1 V VOL 17 0 0 1 OUT1 V Hold time TXPG 17 DELAYCAP 0 033 µF 10 25 40 ms LDO2 OUT2 Output voltage VO 6 7 50 µA OUT2 50 mA 2 700 2 800 2 900 V Line regulation Line 6 7 3 1 V VBAT1 5 5 V 10 mV Load regulation Load 6 7 50 µA OUT2 50 mA 30 mV Ripple rejection VBAT1 OUT2 R R 6 7 f 217 Hz 45 dB Dropout voltage VDO 6 7 OUT2 50 mA 250 mV GND current a...

Page 9: ... µA OUT4 100 mA CONT4 H 2 400 2 500 2 600 V Line regulation Line 40 41 3 1 V VBAT4 5 5 V 10 mV Load regulation Load 40 41 50 µA OUT4 100 mA 30 mV Ripple rejection VBAT4 OUT4 OUT4 R R 40 41 f 217 Hz 45 dB Dropout voltage VDO 40 41 OUT4 100 mA 250 mV GND current at low load IGND 39 OUT4 1 mA 30 µA GND current at max load IGND 39 OUT4 100 mA 2 mA Output noise volt RMS VNOVL 40 41 f 10 Hz to 1 MHz OUT...

Page 10: ...utput noise volt RMS VNOVL 21 f 10 Hz to 1 MHz V BACKUP 1 µF 500 µV Reverse current IRC 21 VBAT2 0 V V BACKUP 3 0 V 100 nA REF OUT Output voltage VO 24 0 µA REF OUT 50 µA 1 200 1 225 1 250 V Line regulation Line 24 3 1 V VBAT2 5 5 V 10 mV Load regulation Load 24 0 µA REF OUT 50 µA 6 mV Ripple rejection VBAT2 REF OUT R R 24 f 217 Hz 50 dB Output noise volt RMS VNOVL 24 f 10 Hz to 1 MHz REF OUT 27 n...

Page 11: ...VCC VSIM 5 5 V VSIMOUT 3 V 6 mA GND current at no load IGND 32 VSIMOUT 50 µA 100 µA Efficiency at max load η 25 29 VSIMOUT 10 mA VSIMOUT 5 V 85 Output ripple voltage VRP 29 f 10 Hz to 1 MHz VSIMOUT 10 µF 100 mVPP Shutdown sup ply current ILDO 25 VSIM ON L 100 nA GSM SIM logic level translation µp interface Input voltage VIH 33 34 35 0 7 OUT1 OUT1 V VIL 33 34 35 0 0 3 OUT1 V Output voltage VOH 35 µ...

Page 12: ...max 1 mA 0 0 4 V Input voltage VIH 38 0 7 VSIMOUT VSIMOUT V VIL 38 0 0 8 V Rise time TR 38 SIM IO 30 pF 1 µs Fall time TF 38 SIM IO 30 pF 1 µs SIM interface 3 V SIMPROG L Output voltage VOH 36 RST max 20 µA 0 8 VSIMOUT VSIMOUT V VOL 36 RST max 200 µA 0 0 2 VSIMOUT V Rise time TR 36 RESET IN RST 30 pF 400 µs Fall time TF 36 RESET IN RST 30 pF 400 µs Output voltage VOH 37 CLK max 20 µA 0 7 VSIMOUT V...

Page 13: ...56 Ω V BACKUP 8 4 kΩ VSIMOUT 510 Ω IBAT IGND 3 0 2 5 2 0 1 5 1 0 0 5 0 0 0 1 2 3 4 5 6 7 Ta 25 C OUT1 1 µF CONT1 OPEN CONT6 H 3 0 2 5 2 0 1 5 1 0 0 5 0 0 0 1 2 3 4 5 Ta 25 C OUT1 1 µF CONT1 L CONT6 OPEN 2 2 2 1 2 0 1 9 1 8 1 7 0 100 200 300 500 400 600 700 800 Ta 25 C VBAT 3 6 V CONT1 L CONT6 OPEN Power supply current I BAT µA Power supply current I BAT µA Power supply current vs power supply volt...

Page 14: ...T 3 6 V CONT1 OPEN CONT6 H 10 5 0 2 0 1 5 1 0 0 5 0 0 0 0 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 OUT1 VBAT Ta 25 C OUT1 18 Ω CONT1 L CONT6 OPEN Ripple rejection vs frequency LDO1 Ripple rejection vs frequency LDO1 Ripple rejection R R dBm Ripple rejection R R dBm Frequency f Hz Frequency f Hz Dropout voltage vs load current LDO1 Dropout voltage V DO V Load current ILOAD mA Output voltage vs ambie...

Page 15: ...0 0 5 0 0 2 1 0 0 10 20 30 40 50 60 70 80 90 100 OUT1 VC OUT1 0 A 120 mA Ta 25 C VBAT 3 6 V CONT1 L CONT6 OPEN VBAT 3 6 V VREF 1 225 V LDO1 OUT1 1 µF 120 mA 4 V 0 V VC Output voltage falling waveforms LDO1 Output voltage falling waveforms LDO1 Waveform at rapid change of output load LDO1 Output voltage V OUT1 V t µs NPN collector voltage V C V Power supply voltage V BAT V t ms Output voltage V OUT...

Page 16: ...V VC 3 0 2 5 2 0 1 5 1 0 0 5 0 0 3 2 1 0 0 10 20 30 40 50 60 70 80 90 100 OUT2 VC OUT2 50 mA 0 A Ta 25 C VBAT 3 6 V CONT1 L CONT2 H CONT6 OPEN VBAT 3 6 V VREF 1 225 V LDO2 OUT2 1 µF 50 mA 4 V 0 V VC Waveform at rapid change of output load LDO1 Output voltage V OUT1 V t ms NPN Collector voltage V C V Measurement diagram IC internal Waveform at rapid change of output load LDO2 Output voltage V OUT2 ...

Page 17: ...oad SIMPROG L VSIMOUT No load 5 4 3 2 1 0 0 1 2 3 4 5 6 7 Reference voltage V FIL V Reference voltage V FIL V Reference voltage vs power supply voltage Reference voltage vs ambient temperature Power supply voltage VBAT V Ambient temperature Ta C Output voltage vs power supply voltage VSIMOUT Chargepump Power supply current I CC VSIM µA Power supply voltage VCC VSIM V Output voltage V SIMOUT V Powe...

Page 18: ...10 k 100 k 1 M Ta 25 C VBAT VCC VSIM 3 6 V VSIM ON H SIMPROG L VCAP VCAP 0 1 µF VSIMOUT 10 µF VSIMOUT 510 Ω 0 20 30 40 80 100 10 100 1 k 10 k 100 k 1 M Ta 25 C VBAT VCC VSIM 3 6 V VSIM ON H SIMPROG L VCAP VCAP 0 1 µF VSIMOUT 10 µF Output voltage V SIMOUT V Output voltage V SIMOUT V Output voltage vs load current VSIMOUT Chargepump Output voltage vs load current VSIMOUT Chargepump Load current ILOA...

Page 19: ... 1 0 VSIM ON VSIMOUT Ta 25 C VBAT VCC VSIM 3 6 V SIMPROG H VSIMOUT 510 Ω 0 0 0 5 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 1 0 10 5 0 3 2 1 0 VSIM ON VSIMOUT Ta 25 C VBAT VCC VSIM 3 6 V SIMPROG L VSIMOUT 510 Ω Efficiency η Efficiency η Efficiency vs power supply voltage VSIMOUT Chargepump Efficiency vs power supply voltage VSIMOUT Chargepump Power supply voltage VCC VSIM V Power supply voltage VCC VSIM V Ef...

Page 20: ...C VBAT VCC VSIM 3 6 V VSIM ON H SIMPROG H VSIMOUT No load AC COUPLED 0 2 6 8 10 12 14 16 18 20 4 20 0 20 Ta 25 C VBAT VCC SIM 3 6 V VSIM ON H SIMPROG L VSIMOUT No load AC COUPLED Output voltage V SIMOUT mV t µs Output voltage waveforms VSIMOUT Chargepump Output voltage V SIMOUT mV t µs Output voltage waveforms VSIMOUT Chargepump Input voltage V SIMPROG V t ms Output voltage rising waveforms VSIMOU...

Page 21: ... 40 20 0 20 40 Ta 25 C VBAT VCC VSIM 3 6 V VSIM ON H SIMPROG H VSIMOUT 510 Ω AC COUPLED 60 40 20 0 20 40 60 0 2 4 6 8 10 12 14 16 18 20 Ta 25 C VBAT VCC VSIM 3 6 V VSIM ON H SIMPROG H VSIMOUT 5 1 kΩ AC COUPLED Output voltage V SIMIO V Input voltage VUPIO V Output voltage vs input voltage SIM Inter Output voltage V SIMOUT mV t µs Output voltage waveforms VSIMOUT Chargepump Output voltage V SIMOUT m...

Page 22: ...AT VCC VSIM 3 6 V VSIM ON H SIMPROG H 1000 800 600 400 200 0 40 20 20 0 40 60 80 100 Output voltage V SIMOUT V Ambient temperature Ta C Output voltage vs ambient temperature SIM Interface Power dissipation P D mW Ambient temperature Ta C Power dissipation vs ambient temperature Output voltage V SIMOUT V Ambient temperature Ta C Output voltage vs ambient temperature SIM Interface ...

Page 23: ...es an output voltage 2 8 V typ at the OUT2 terminal pin 6 7 when the XPOWERGOOD terminal pin 17 voltage is at H level and an H level signal is input at the CONT2 terminal pin 16 Power can be drawn from the OUT2 terminal for external use up to a maximum load current of 50 mA 5 General Purpose switches Any of the OUT terminals can be connected to any SW INPUT terminal so that when the corresponding ...

Page 24: ...in 27 or 3 0 V typ voltage when an L level signal input at the SIMPROG terminal This voltage can also be drawn from the VSIMOUT terminal for external use up to a load current of 10 mA 12 GSM SIM Logic Translation µP Interface When a signal is input from the microprocessor to the RESET IN terminal pin 33 and CLK IN terminal pin 34 a level shifted voltage is output from the RST terminal pin 36 and C...

Page 25: ... OUT1 XPOWERGOOD OUT5 OUT2 OUT3 OUT4 SW1 OUTPUT VSIMOUT SW2 OUTPUT SW3 OUTPUT SW2 ON SW3 ON delay 2 0 V VSIMOUT 5 V VSIMOUT 3 V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Input Output 1 Battery controlled 5 OUT1 hold 2 BACKUP UVLO ON 6 to 12 µP controlled 3 phone turned on 14 Main UVLO off 4 XPOWERGOOD on 16 BACKUP UVLO off ...

Page 26: ... 51 48 47 60 61 62 3 4 5 46 45 58 59 42 43 40 41 39 21 CONT1 CONT6 CONT2 SW1 ON SW2 ON SW3 ON CONT3 CONT5 CONT4 VREF VFIL REF OUT VSIM ON SIMPROG RESET IN CLK IN µP IO VCC VSIM OSC VSIMOUT VCAP VCAP RST CLK SIM IO GND VSIM XPOWERGOOD DELAYCAP GND1 OUT2 SW2 INPUT SW2 OUTPUT SW3 INPUT SW3 OUTPUT VBAT3 OUT3 GND3 OUT5 GND5 VBAT4 OUT4 GND4 V BACKUP SW1 INPUT SW1 OUTPUT OUT1 VBAT1 VBAT2 56 57 44 22 23 2...

Page 27: ...g printed circuit boards should be stored and shipped in conductive bags or Containers Work platforms tools and instruments should be properly grounded Working personal should be grounded with resistance of 250 kΩ to 1 MΩ between body and ground Do not apply negative voltages The use of negative voltages below 0 3V may create parasitic transistors on LSI lines Which can cause abnormal operation OR...

Page 28: ... C 1998 FUJITSU LIMITED F64009S 3C 6 A 33 32 17 16 1 64 49 48 INDEX 12 00 0 20 472 008 SQ 10 00 0 10 394 004 SQ 0 50 0 08 020 003 007 001 003 0 03 0 08 0 18 Stand off 0 10 0 10 004 004 0 25 010 018 030 0 45 0 75 020 008 0 50 0 20 Mounting height 0 8 Details of A part 1 50 0 20 0 10 008 004 059 0 08 003 LEAD No M 0 08 003 0 145 0 055 006 002 ...

Page 29: ... and could lead directly to death personal injury severe physical damage or other loss i e nuclear reaction control in nuclear facility aircraft flight control air traffic control mass transport control medical life support system missile launch control in weapon system or 2 for use requiring extremely high reliability i e submersible repeater and artificial satellite Please note that Fujitsu will...

Reviews: