Serial Communications Interface Module (SCI)
MC68HC908MR32 • MC68HC908MR16 Data Sheet, Rev. 6.1
162
Freescale Semiconductor
13.3.2.1 Character Length
The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1
(SCC1) determines character length. When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3)
is the ninth bit (bit 8).
13.3.2.2 Character Transmission
During an SCI transmission, the transmit shift register shifts a character out to the PTF5/TxD pin. The SCI
data register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register.
To initiate an SCI transmission:
1.
Enable the SCI by writing a 1 to the enable SCI bit (ENSCI) in SCI control register 1 (SCC1).
2.
Enable the transmitter by writing a 1 to the transmitter enable bit (TE) in SCI control register 2
(SCC2).
3.
Clear the SCI transmitter empty bit by first reading SCI status register 1 (SCS1) and then writing
to the SCDR.
4.
Repeat step 3 for each subsequent transmission.
At the start of a transmission, transmitter control logic automatically loads the transmit shift register with
a preamble of 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit
shift register. A 0 start bit automatically goes into the least significant bit (LSB) position of the transmit shift
register. A 1 stop bit goes into the most significant bit (MSB) position.
The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the
transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data
bus. If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a
transmitter CPU interrupt request.
When the transmit shift register is not transmitting a character, the PTF5/TxD pin goes to the idle
condition, logic 1. If at any time software clears the ENSCI bit in SCI control register 1 (SCC1), the
transmitter and receiver relinquish control of the port E pins.
13.3.2.3 Break Characters
Writing a 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character. A
break character contains all 0s and has no start, stop, or parity bit. Break character length depends on
the M bit in SCC1. As long as SBK is at 1, transmitter logic continuously loads break characters into the
transmit shift register. After software clears the SBK bit, the shift register finishes transmitting the last
break character and then transmits at least one logic 1. The automatic logic 1 at the end of a break
character guarantees the recognition of the start bit of the next character.
The SCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a
logic 0 where the stop bit should be.
Receiving a break character has these effects on SCI registers:
•
Sets the framing error bit (FE) in SCS1
•
Sets the SCI receiver full bit (SCRF) in SCS1
•
Clears the SCI data register (SCDR)
•
Clears the R8 bit in SCC3
•
Sets the break flag bit (BKF) in SCS2
•
May set the overrun (OR), noise flag (NF), parity error (PE), or reception-in-progress flag (RPF) bits