E-4
English
6 Installation
6.1 General Information
The unit must be installed indoors on a level, smooth and hori-
zontal surface. The entire base of the frame should lie directly on
the floor to ensure a good soundproof seal. If this is not the case,
additional sound insulation measures may be necessary.
The heat pump must be installed so that maintenance work can
be carried out without being hindered. This can be ensured by
maintaining a clearance of approx. 1 m in front of and on each
side of the heat pump.
6.2 Acoustic Emissions
The heat pump operates silently due to efficient sound insulation.
Internal insulation measures should be carried out to prevent vi-
brations from being transmitted to the foundation or to the heat-
ing system.
7 Installation
7.1 General Information
The following connections need to be established on the heat
pump:
Flow and return flow of the brine system
Flow for heating and hot water preparation
Joint return flow for the heating and hot water preparation
Return flow of the overflow valve
Connection for an additional expansion vessel (according to
need)
Outflows for the pressure relief valves
Condensate outflow
Power supply
7.2 Heating System Connection
The heat pump is equipped with separate outputs for the heating
circuit and the hot water circuit.
If the heat pump is not intended to be used to heat up the hot wa-
ter, the hot water output must be permanently sealed.
Before connecting the heating water system to the heat pump,
the heating system must be flushed to remove any impurities,
residue from sealants, etc. Any accumulation of deposits in the
liquifier could cause the heat pump to completely break down.
An overflow valve is installed in the device for systems in which
the heating water flow can be shut off via the radiator or thermo-
stat valves. This ensures a minimum heating water flow rate
through the heat pump and helps to avoid faults.
Once the heating system has been installed, it must be filled, de-
aerated and pressure-tested.
Antifreeze protection for installation locations
prone to frost
The antifreeze function of the heat pump controller is active
whenever the controller and the heat circulating pumps are ready
for operation. If the heat pump is taken out of service or in the
event of a power failure, the system has to be drained. The heat-
ing circuit should be operated with a suitable antifreeze if heat
pump systems are implemented in buildings where a power fail-
ure can not be detected (holiday home.
The integrated expansion vessel has a volume of 24 litres. This
volume is suitable for buildings with a living space area to be
heated of maximum 200 m
2
.
The volume should be checked by the heating system engineer.
If necessary, an additional expansion vessel must be installed
(according to DIN 4751, Part 1). The tables listed in the manufac-
turers' catalogues simplify dimensioning the system on the basis
of the water volume.
ATTENTION!
In the case of large-volume heating circuits, an additional expansion
vessel must be used to supplement the installed expansion vessel (24
litres, 1.0 bar admission pressure).
7.3 Heat Source Connection
The following procedure must be observed when connecting the
heat source:
Connect the brine pipe to the heat pump flow and return.
Do this in accordance with the hydraulic plumbing diagram.
The dirt traps and micro bubble air separator included in the
scope of supply must be inserted in the brine inlet of the heat
pump by the customer.
The brine liquid must be produced prior to charging the system.
The liquid must have an antifreeze concentration of at least 25 %
to ensure frost protection down to -14 °C.
Only monoethylene glycol or propylene glycol-based antifreeze
may be used.
The heat source system must be de-aerated and checked for
leaks.
ATTENTION!
The brine solution must contain at least a 25 % concentration of a
monoethylene glycol or propylene glycol-based antifreeze, which must
be mixed before filling.
Summary of Contents for SI 11KMS
Page 2: ......
Page 30: ...A VI Anhang Appendix Annexes 3 2 Last Load Charge ...