E-2
English
1 Please read
immediately
1.1 Important Information
ATTENTION!
The heat pump is not secured to the wooden pallet.
ATTENTION!
The heat pump must not be tilted more than 45° (in any direction).
ATTENTION!
Do not use the holes in the panel assemblies for lifting the device!
ATTENTION!
In the case of large-volume heating circuits, an additional expansion
vessel must be used to supplement the installed expansion vessel (24
litres, 1.0 bar admission pressure).
ATTENTION!
The brine solution must contain at least a 25 % concentration of a
monoethylene glycol or propylene glycol-based antifreeze, which must
be mixed before filling.
ATTENTION!
The heat pump must be started up in accordance with the installation and
operating instructions of the heat pump controller.
ATTENTION!
We recommend the installation of a suitable corrosion protection system
to prevent the formation of deposits (e.g. rust) in the condenser of the
heat pump.
ATTENTION!
The supplied dirt trap must be inserted in the heat source inlet of the heat
pump to protect the evaporator against the ingress of impurities.
ATTENTION!
Any work on the heat pump may only be performed by authorised and
qualified after-sales service technicians.
ATTENTION!
Disconnect all electrical circuits from the power source prior to opening
the device.
1.2 Legal Regulations and
Directives
This heat pump conforms to all relevant DIN/VDE regulations
and EU directives. Refer to the EC Declaration of Conformity in
the appendix for details.
The heat pump must be connected to the power supply in com-
pliance with all relevant VDE, EN and IEC standards. Any further
connection requirements stipulated by local utility companies
must also be observed.
The heat pump is to be connected to the heat source system and
the heating system in accordance with all applicable regulations.
1.3 Energy-Efficient Use of the
Heat Pump
By operating this heat pump you are helping to protect our envi-
ronment. Both the heating system and the heat source must be
properly designed and dimensioned to ensure efficient operation.
It is particularly important to keep water flow temperatures as low
as possible. All connected energy consumers should therefore
be suitable for low flow temperatures. Raising the heating water
temperature by 1 K corresponds to an increase in energy con-
sumption of approx.
2.5 %. Low-temperature heating systems with flow temperatures
between 30 °C and 50 °C are well-suited for energy-efficient op-
eration.
2 Purpose of the Heat
Pump
2.1 Application
The brine-to-water heat pump is designed for use in existing or
newly built heating systems. Brine is used as the heat transfer
medium in the heat source system. Borehole heat exchangers,
ground heat collectors or similar systems can be used as the
heat source.
2.2 Operating Principle
The heat generated by the sun, wind and rain is stored in the
ground. This heat stored in the ground is collected at a low tem-
perature by the brine circulating in the ground heat collector, the
borehole heat exchanger or a similar system. A circulating pump
then conveys the “heated” brine to the evaporator of the heat
pump. There the heat is given off to the refrigerant in the refriger-
ating cycle. This cools the brine so that it can once again absorb
thermal energy in the brine circuit.
The refrigerant is drawn in by the electrically driven compressor,
compressed and “pumped” to a higher temperature level. The
electrical power needed to run the compressor is not lost in this
process. Most of it is absorbed by the refrigerant.
The refrigerant subsequently passes through the liquifier where it
transfers its thermal energy to the heating water. Depending on
the set operating point (thermostat setting), the heating water is
thus heated up to a max. of 60 °C.
Summary of Contents for SI 11KMS
Page 2: ......
Page 30: ...A VI Anhang Appendix Annexes 3 2 Last Load Charge ...