background image

USQ Models

5

On/Off Control

The primary-side, Remote On/Off Control function (pin 2) can be specified to 
operate with either positive or negative polarity. Positive-polarity devices ("P" 
suffix) are enabled when pin 2 is left open or is pulled high (+2.5-5V applied 
with respect to –Input, pin 1, I

IN

 < 150µA typical). Positive-polarity devices are 

disabled when pin 2 is pulled low (0-0.8V with respect to –Input, I

IN

 < 800µA. 

Negative-polarity devices are off when pin 2 is high/open and on when pin 2  
is pulled low. See Figure 4.

 
Dynamic control of the remote on/off function is best accomplished with 
a mechanical relay or an open-collector/open-drain drive circuit (optically 
isolated if appropriate). The drive circuit should be able to sink appropriate 
current  (see Performance Specifications) when activated and withstand 
appropriate voltage when deactivated.

Current Limiting

When power demands from the output falls within the current limit inception 
range for the rated output current, the DC/DC converter will go into a current  
limiting mode. In this condition the output voltage will decrease propor-
tionately with increases in output current, thereby maintaining a somewhat 
constant power dissipation. This is commonly referred to as power limiting. 
Current limit inception is defined as the point where the full-power output 
voltage falls below the specified tolerance. If the load current being drawn 
from the converter is significant enough, the unit will go into a short circuit 
condition. See “Short Circuit Condition.”

Short Circuit Condition

When a converter is in current limit mode the output voltages will drop as 
the output current demand increases. If the output voltage drops too low, the 
magnetically coupled voltage used to develop primary side voltages will also 
drop, thereby shutting down the PWM controller. Following a time-out period 

Figure 4. Driving the Remote On/Off Control Pin

Thermal Shutdown

USQ converters are equipped with thermal-shutdown circuitry.  If the internal 
temperature of the DC/DC converter rises above the designed operating tem-
perature (See Performance Specifications), a precision temperature sensor 
will power down the unit.  When the internal temperature decreases below 
the threshold of the temperature sensor, the unit will self start. 

Output Overvoltage Protection

The output voltage is monitored for an overvoltage condition via magnetic 
coupling to the primary side.  If the output voltage rises to a fault condition, 
which could be damaging to the load circuitry (see Performance Specifica-
tions), the sensing circuitry will power down the PWM controller causing 
the output voltage to decrease. Following a time-out period the PWM will 
restart, causing the output voltage to ramp to its appropriate value.  If the 
fault condition persists, and the output voltages again climb to excessive 
levels, the overvoltage circuitry will initiate another shutdown cycle.  This 
on/off cycling is referred to as "hiccup" mode.  

Input Reverse-Polarity Protection

If the input-voltage polarity is accidentally reversed, an internal diode will 
become forward biased and likely draw excessive current from the power 
source. If the source is not current limited (<5A) nor the circuit appropriately 
fused, it could cause permanent damage to the converter.

Input Fusing

Certain applications and/or safety agencies may require the installation of 
fuses at the inputs of power conversion components.  Fuses should also be 
used if the possibility of a sustained, non-current-limited, input-voltage polar-
ity reversal exists.  For DATEL USQ Series DC/DC Converters, slow-blow 
fuses are recommended with values no greater than the following:

 

V

OUT

 Range 

Fuse Value -D48 

Fuse Value -D24

 

 

1.2V

OUT

 Models 

1.5 Amps 

— 

 

1.5V

OUT

 Models 

2.5 Amps 

— 

 

1.8V

OUT

 Models 

3 Amps 

— 

 

2.5V

OUT

 Models 

3.5 Amps 

— 

 

3.3V

OUT

 Models 

4 Amps 

— 

 

5

 

to

 

24V

OUT

 Models 

6 Amps 

10 Amps

See Performance Specifications for Input Current and Inrush Transient limits.

2

1

3

200k

+5V

REF

200k

+INPUT

EQUIVALENT CIRCUIT FOR
POSITIVE AND NEGATIVE 
LOGIC MODELS

CONTROL

–INPUT

ON/OFF

CONTROL

Start-Up Time

The V

IN

 to V

OUT

 Start-Up Time is the interval between the point at which 

a ramping input voltage crosses the Start-Up Threshold voltage and the 
point at which the fully loaded output voltage enters and remains within it 
specified 

±

1% accuracy band. Actual measured times will vary with input 

source impedance, external input capacitance, and the slew rate and final 
value of the input voltage as it appears to the converter.The On/Off to V

OUT

 

Start-Up Time assumes the converter is turned off via the Remote On/Off 
Control with the nominal input voltage already applied. The specification 
defines the interval between the point at which the converter is turned on 
(released) and the point at which the fully loaded output voltage enters and 
remains within its specified 

±

1% accuracy band.

Trimming Output Voltage

USQ converters have a trim capability (pin 6) that enables users to adjust 
the output voltage from +10% to –20% (refer to the trim equations and trim 
graphs that follow).  Adjustments to the output voltage can be accomplished 
with a single fixed resistor as shown in Figures 5 and 6.  A single fixed resis-
tor can increase or decrease the output voltage depending on its connection. 
Resistors should be located close to the converter and have TCR's less than 
100ppm/°C to minimize sensitivity to changes in temperature.  If the trim 
function is not used, leave the trim pin open.

of 5 to 15 milliseconds, the PWM will restart, causing the output voltages to begin 
ramping to their appropriate values. If the short-circuit condition persists, 
another shutdown cycle will be initiated. This on/off cycling is referred to 
as “hiccup” mode. The hiccup cycling reduces the average output current, 
thereby preventing internal temperatures from rising to excessive levels. The 
USQ is capable of enduring an indefinite short circuit output condition.

2 0 A ,   S I N G L E   O U T P U T   D C / D C   C O N V E R T E R S

Summary of Contents for 20A

Page 1: ...ion 1500Vdc superior ef ciency to 91 tight regula tion to 0 05 max line and load low noise to 50mVp p quick step response 200 sec and an array of protection features I O protection includes input unde...

Page 2: ...USQ Series have no minimum load requirements and will regulate within spec under no load conditions with perhaps a slight increase in ripple noise Additionally 1 2V 1 5V 1 8V 2 5V and 5V models are u...

Page 3: ...5 x 2 28 x 0 40 36 8 x 57 9 x 10 2mm Case Material Cast aluminum Baseplate Material Aluminum Shielding Neither the aluminum case nor baseplate are connected to a package pin Pin Material Brass solder...

Page 4: ...ring Input Ripple Current CIN VIN CBUS LBUS CIN 33 F ESR 700m 100kHz CBUS 220 F ESR 100m 100kHz LBUS 12 H 3 1 INPUT INPUT CURRENT PROBE TO OSCILLOSCOPE C1 C1 1 F CERAMIC C2 10 F TANTALUM LOAD 2 3 INCH...

Page 5: ...iate another shutdown cycle This on off cycling is referred to as hiccup mode Input Reverse Polarity Protection If the input voltage polarity is accidentally reversed an internal diode will become for...

Page 6: ...usted output accuracy VO desired output voltage Standard USQ s have a positive trim where a single resistor connected from the Trim pin pin 6 to the Sense pin 7 will increase the output voltage A resi...

Page 7: ...igure 9 USQ 1 8Trim Up Resistance vs Increase VOUT 0 1 2 3 4 5 6 7 8 9 10 VOUT INCREASE RESISTANCE 1 x107 1 x106 1 x105 1 x104 Figure 10 USQ 2 5Trim Up Resistance vs Increase VOUT 0 1 2 3 4 5 6 7 8 9...

Page 8: ...ce vs Decrease VOUT 8 0 2 4 6 8 10 12 14 16 18 20 VOUT DECREASE RESISTANCE 1 x106 1 x105 1 x104 1 x103 Figure 17 USQ 1 2Trim Down Resistance vs Decrease VOUT Trim Up Resistance vs Percentage Increase...

Page 9: ...Sense in conjunction with trim adjustment of the output voltage can cause the overvoltage protection circuitry to activate see Performance Speci ca tions for overvoltage limits Power derating is based...

Page 10: ...ensive evaluations under assorted capacitive load conditions of the dynamic load capabilities i e the transient or step response of USQ Series DC DC Converters In particular we have evalu ated devices...

Page 11: ...iciency VIN 36V VIN 48V VIN 75V Start Up from Remote On Off Control VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 2V div 1 5VOUT pin 8 Remote On Off Control pin 2 Start Up from VIN...

Page 12: ...COUT 10 F tantalum 1 F ceramic 2msec div 1V div 20V div 1 5VOUT pin 8 Input pin 3 Start Up from Remote On Off Control VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 2V div 1 5VOUT pi...

Page 13: ...VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 2V div 1 8VOUT pin 8 Remote On Off Control pin 2 Start Up from VIN VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 20...

Page 14: ...COUT 10 F tantalum 1 F ceramic 2msec div 1V div 20V div 2 5VOUT pin 8 Input pin 3 Start Up from Remote On Off Control VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 2V div 2 5VOUT pi...

Page 15: ...VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 2V div 3 3VOUT pin 8 Remote On Off Control pin 2 Start Up from VIN VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 20...

Page 16: ...COUT 10 F tantalum 1 F ceramic 2msec div 1V div 20V div 5VOUT pin 8 Input pin 3 Start Up from Remote On Off Control VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 5V div 5VOUT pin 8...

Page 17: ...USQ Models Typical Performance Curves for 5VOUT Models 17 2 0 A S I N G L E O U T P U T D C D C C O N V E R T E R S...

Page 18: ...1 to pin 3 VIN 48V no heat sink Output Current Amps Ambient Temperature C 10 8 6 4 2 0 40 10 0 10 20 30 40 50 60 70 80 90 100 Natural Convection 200 lfm 400 lfm 600 lfm USQ 12 8 3 D48 Output Current v...

Page 19: ...60 65 70 75 80 85 200 lfm 400 lfm USQ 12 8 3 D24 Output Current vs Ambient Temperature Transverse air flow pin 1 to pin 3 VIN 24V no heat sink Output Current Amps Ambient Temperature C 9 8 7 6 5 4 3...

Page 20: ...ol VIN 48V IOUT 6 7A COUT 10 F tantalum 1 F ceramic 2msec div 5V div 2V div 15VOUT pin 8 Remote On Off Control pin 2 Start Up from VIN VIN 48V IOUT 6 7A COUT 10 F tantalum 1 F ceramic 2msec div 5V div...

Page 21: ...l VIN 48V IOUT 4 2A COUT 10 F tantalum 1 F ceramic 2msec div 10V div 2V div 24VOUT pin 8 Remote On Off Control pin 2 Start Up from VIN VIN 48V IOUT 4 2A COUT 10 F tantalum 1 F ceramic 2msec div 10V di...

Page 22: ...ed herein or the use of other technical information contained herein will not infringe upon existing or future patent rights The descriptions contained herein do not imply the granting of licenses to...

Reviews: