background image

USQ Models

Remote On/Off Control Polarity: 

  Add "P" for positive polarity 
     (pin 2 open = converter on)   
  Add "N" for negative polarity 
     (pin 2 open = converter off)

Performance/Functional Specifications

Typical @ T

A

 = +25°C under nominal line voltage and full-load conditions, unless noted.

  

(1)

Input

Input Voltage Range:

  

 

  D24 Models 

18-36 Volts (24V nominal) 

  D48 Models 

36-75 Volts (48V nominal)

Overvoltage Shutdown

  

None 

(3)

Start-Up Threshold:

 

(4)

  D24 Models 

15.5-18 Volts (16.5V typical) 

  D48 Models 

28.5-32 Volts (30V typical)

Undervoltage Shutdown:

 

(4)

  D24 Models 

14.5-16.5 Volts (15.5V typical) 

  D48 Models 

26.5-29.5 Volts (28.3V typical)

Input Current:

 

  Normal Operating Conditions 

See Ordering Guide 

  Inrush Transient 

0.05A

2

sec maximum 

  Standby Mode: 
    Off, UV, Thermal Shutdown 

3mA 

Input Reflected Ripple Current 

(5)

 

5mAp-p

Internal Input Filter Type:

  

 

  D24 Models 

Pi (0.01µF - 1.5µH - 3.3µF) 

  D48 Models 

Pi (0.01µF - 4.7µH - 3.3µF)

Reverse-Polarity Protection 

(3)

 

1 minute duration, 5A maximum

Remote On/Off Control

 (Pin 2): 

 

(6)

 

  

  Positive Logic ("P" Suffix Models) 

On = open, open collector or  

       

2.5-5V applied. I

IN

 = 150µA max. 

       

Off = pulled low to 0-0.8V I

IN

 = 800µA max. 

  Negative Logic ("N" Suffix Models)  

On = pulled low to 0-0.8V I

IN

 = 800µA max. 

       

Off = open, open collector or  

       

2.5-5V applied. I

IN

 = 150µA max.

Output

Minimum Loading

 

No load

Maximum Capacitive Loading

 

(7)

 

25,000µF

V

OUT

 Accuracy 

(Full Load): 

 

  Initial 

±1% maximum 

  Temperature Coefficient 

±0.02% per °C 

  Extreme 

(8)

 

±3%

V

OUT

 Trim Range

 

(9)

 

+10%, –20% 

Remote Sense Compensation

 

(4)

 

+10%

Ripple/Noise

 (20MHz BW) 

See Ordering Guide

Line/Load Regulation 

 

See Ordering Guide

Efficiency

 

See Ordering Guide

Isolation Voltage:

 

  Input-to-Output 

1500Vdc minimum 

  Input-to-Case 

1500Vdc minimum 

  Output-to-Case 

1500Vdc minimum

Isolation Resistance

 

100M

Isolation Capacitance

 

650pF

Current Limit Inception 

(90% V

OUT

)

 

(10)

 

 

  1.2V

OUT

 

22-30 Amps (26A typical) 

  1.5, 1.8, 2.5, 3.3, 5V

OUT

 

22-29 Amps (26A typical) 

  12V

OUT

 

9.2-10.5 Amps (9.9A typical) 

  15V

OUT

 

7.6-8.9 Amps (8.25A typical) 

  18V

OUT

 

6-7.75 Amps (6.5A typical) 

  24V

OUT

 

4.8-6 Amps (5.5A typical)

Short Circuit:

 

(4)

 

 

  Current 

Hiccup 

  Duration 

Continuous

Output (Continued)

Overvoltage Protection:

 

(4)

 

Magnetic feedback 

  1.5V

OUT

 

2.2 Volts 

  1.8V

OUT

 

2.7 Volts 

  2.5V

OUT

 

3.8 Volts 

  3.3V

OUT

 

4.9 Volts 

  5V

OUT

 

6.4 Volts

  12V

OUT

 

15 Volts

 

15V

OUT

 

20 Volts 

 

18V

OUT

 

22.5 Volts 

 

24V

OUT

 

30 Volts

Dynamic Characteristics

Dynamic Load Response 

(11)

 

See Dynamic Load Response 

   

under Technical Notes

Start-Up Time:

 

(4) (12)

 

  V

IN to

 V

OUT

 

5msec typical, 8msec maximum

  On/Off

 to

 V

OUT

 

5msec typical, 8msec maximum

Switching Frequen

cy 

(11)

Environmental

Calculated MTBF:  

(13)

 

>2.5 million hours

Operating Temperature

 (Ambient):  

(4) (14)

  Without Derating 

Model and air flow dependent   

  With Derating 

To +110°C (baseplate)

Baseplate Temperature:  

 

(4) (14)

 

 

  Maximum Allowable 

+110°C 

  Thermal Shutdown 

+115-122°C, +118°C typical.

Physical 

Dimensions

 

1.45" x 2.28" x 0.40" (36.8 x 57.9 x 10.2mm)

Case Material

 

Cast aluminum

Baseplate Material

 

Aluminum

Shielding

 

Neither the aluminum case nor baseplate  

   

are connected to a package pin

Pin Material

 

Brass, solder coated

Weight: 

1.52 ounces (43 grams)

Primary-to-Secondary Insulation Level 

Basic

3

(1)

   All models are tested and specified with external output capacitors (1µF ceramic in parallel  

 

with 10µF tantalum), unless otherwise noted. These converters have no minimum-load require 

 

ments and will effectively regulate under no-load conditions. 

(2)

   Contact DATEL for input voltage ranges (18-36V,  24V nominal) other than those listed.

(3)

   See Absolute Maximum Ratings for allowable input voltages.

(4)

   See Technical Notes/Performance Curves for additional explanations and details.

(5)

   Input Ripple Current is tested/specified over a 5-20MHz bandwidth with an external 33µF input  

 

capacitor and a simulated source impedance of 220µF and 12µH. See I/O Filtering, Input  

 

Ripple Current and Output Noise for details. The 24V input models can benefit by increasing the 

 

33µF external input capacitance to 100µF, if the application has a high source impedance.

(6)

   The On/Off Control is designed to be driven with open-collector (or equivalent) logic or the 

 

application of appropriate voltages (referenced to –Input (pin 1)).  See Remote On/Off Control 

 

for more details.

(7)

   USQ Series DC/DC converters are unconditionally stable, including start-up and short-circuit-   

 

shutdown situations, with capacitive loads up to 25,000µF (470µF for 12V, 15V, 18V and 24V  

 

models at full load).

(8)

   Extreme Accuracy refers to the accuracy of either trimmed or untrimmed output voltages over  

 

all normal operating ranges and combinations of input voltage, output load and temperature.

(9)

   See Output Trimming for detailed trim equations.

(10)

  The Current-Limit Inception point is the output current level at which the USQ’s power-limiting  

 

circuitry drops the output voltage 10% from its initial value. See Output Current Limiting and  

 

Short-Circuit Protection for more details.

(11)

  See Dynamic Load Response under Technical Notes for detailed results including switching  

 

frequencies. DATEL has performed extensive evaluations of Dynamic Load Response. In addi

 

tion to the 10µF || 1µF external capacitors, specifications are also given for 220µF || 1µF  

 

external output capacitors for quick comparison purposes.

(12)

  For the Start-Up Time specifications, output settling is defined by the output voltage having 

 

reached ±1% of its final value.

(13)

  MTBF’s are calculated using Telcordia (Bellcore) Method 1 Case 3, ground fixed conditions,    

 

+40°C case temperature, and full-load conditions. Contact DATEL for demonstrated life-test data.

(14)

  All models are fully operational and meet published specifications, including "cold start," at –40°C.

2 0 A ,   S I N G L E   O U T P U T   D C / D C   C O N V E R T E R S

Summary of Contents for 20A

Page 1: ...ion 1500Vdc superior ef ciency to 91 tight regula tion to 0 05 max line and load low noise to 50mVp p quick step response 200 sec and an array of protection features I O protection includes input unde...

Page 2: ...USQ Series have no minimum load requirements and will regulate within spec under no load conditions with perhaps a slight increase in ripple noise Additionally 1 2V 1 5V 1 8V 2 5V and 5V models are u...

Page 3: ...5 x 2 28 x 0 40 36 8 x 57 9 x 10 2mm Case Material Cast aluminum Baseplate Material Aluminum Shielding Neither the aluminum case nor baseplate are connected to a package pin Pin Material Brass solder...

Page 4: ...ring Input Ripple Current CIN VIN CBUS LBUS CIN 33 F ESR 700m 100kHz CBUS 220 F ESR 100m 100kHz LBUS 12 H 3 1 INPUT INPUT CURRENT PROBE TO OSCILLOSCOPE C1 C1 1 F CERAMIC C2 10 F TANTALUM LOAD 2 3 INCH...

Page 5: ...iate another shutdown cycle This on off cycling is referred to as hiccup mode Input Reverse Polarity Protection If the input voltage polarity is accidentally reversed an internal diode will become for...

Page 6: ...usted output accuracy VO desired output voltage Standard USQ s have a positive trim where a single resistor connected from the Trim pin pin 6 to the Sense pin 7 will increase the output voltage A resi...

Page 7: ...igure 9 USQ 1 8Trim Up Resistance vs Increase VOUT 0 1 2 3 4 5 6 7 8 9 10 VOUT INCREASE RESISTANCE 1 x107 1 x106 1 x105 1 x104 Figure 10 USQ 2 5Trim Up Resistance vs Increase VOUT 0 1 2 3 4 5 6 7 8 9...

Page 8: ...ce vs Decrease VOUT 8 0 2 4 6 8 10 12 14 16 18 20 VOUT DECREASE RESISTANCE 1 x106 1 x105 1 x104 1 x103 Figure 17 USQ 1 2Trim Down Resistance vs Decrease VOUT Trim Up Resistance vs Percentage Increase...

Page 9: ...Sense in conjunction with trim adjustment of the output voltage can cause the overvoltage protection circuitry to activate see Performance Speci ca tions for overvoltage limits Power derating is based...

Page 10: ...ensive evaluations under assorted capacitive load conditions of the dynamic load capabilities i e the transient or step response of USQ Series DC DC Converters In particular we have evalu ated devices...

Page 11: ...iciency VIN 36V VIN 48V VIN 75V Start Up from Remote On Off Control VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 2V div 1 5VOUT pin 8 Remote On Off Control pin 2 Start Up from VIN...

Page 12: ...COUT 10 F tantalum 1 F ceramic 2msec div 1V div 20V div 1 5VOUT pin 8 Input pin 3 Start Up from Remote On Off Control VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 2V div 1 5VOUT pi...

Page 13: ...VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 2V div 1 8VOUT pin 8 Remote On Off Control pin 2 Start Up from VIN VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 20...

Page 14: ...COUT 10 F tantalum 1 F ceramic 2msec div 1V div 20V div 2 5VOUT pin 8 Input pin 3 Start Up from Remote On Off Control VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 2V div 2 5VOUT pi...

Page 15: ...VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 2V div 3 3VOUT pin 8 Remote On Off Control pin 2 Start Up from VIN VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 20...

Page 16: ...COUT 10 F tantalum 1 F ceramic 2msec div 1V div 20V div 5VOUT pin 8 Input pin 3 Start Up from Remote On Off Control VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 5V div 5VOUT pin 8...

Page 17: ...USQ Models Typical Performance Curves for 5VOUT Models 17 2 0 A S I N G L E O U T P U T D C D C C O N V E R T E R S...

Page 18: ...1 to pin 3 VIN 48V no heat sink Output Current Amps Ambient Temperature C 10 8 6 4 2 0 40 10 0 10 20 30 40 50 60 70 80 90 100 Natural Convection 200 lfm 400 lfm 600 lfm USQ 12 8 3 D48 Output Current v...

Page 19: ...60 65 70 75 80 85 200 lfm 400 lfm USQ 12 8 3 D24 Output Current vs Ambient Temperature Transverse air flow pin 1 to pin 3 VIN 24V no heat sink Output Current Amps Ambient Temperature C 9 8 7 6 5 4 3...

Page 20: ...ol VIN 48V IOUT 6 7A COUT 10 F tantalum 1 F ceramic 2msec div 5V div 2V div 15VOUT pin 8 Remote On Off Control pin 2 Start Up from VIN VIN 48V IOUT 6 7A COUT 10 F tantalum 1 F ceramic 2msec div 5V div...

Page 21: ...l VIN 48V IOUT 4 2A COUT 10 F tantalum 1 F ceramic 2msec div 10V div 2V div 24VOUT pin 8 Remote On Off Control pin 2 Start Up from VIN VIN 48V IOUT 4 2A COUT 10 F tantalum 1 F ceramic 2msec div 10V di...

Page 22: ...ed herein or the use of other technical information contained herein will not infringe upon existing or future patent rights The descriptions contained herein do not imply the granting of licenses to...

Reviews: