background image

USQ Series

  

Load Conditions 

 

Performance Specifications    

1.2V

OUT

 

1.5V

OUT

 

1.8V

OUT

 

2.5V

OUT

 

3.3V

OUT

 

5V

OUT 

12 to 24V

OUT

    

Load Step = 50 to 75% of I

OUT

 Max.:

    

  Peak Deviation, typ. 

 

115mV 

110mV 

125mV 

100mV 

170mV 

125mV 

100mV

    

  Settling Time to ±1% of Final Value, max. 

 

200µs 

200µs 

225µs 

200µs 

100µs 

100µs 

100µs

  

C

OUT

 = 10µF || 1µF

 

Load Step = 75 to 50% of I

OUT

 Max.:

  

10µF || 1µF

 

  Peak Deviation, typ. 

 

115mV 

110mV 

125mV 

100mV 

100mV 

125mV 

100mV

    

  Settling Time to ±1% of Final Value, max. 

 

140µs 

200µs 

225µs 

200µs 

100µs 

100µs 

100µs

    

Load Step = 50 to 75% of I

OUT

 Max.:

    

  Peak Deviation, typ. 

 

120mV 

TBD 

105mV 

90mV 

105mV 

TBD 

85mV

    

  Settling Time to ±1% of Final Value, typ. 

 

115µs 

TBD 

170µs 

65µs 

65µs 

TBD 

40µs

  

C

OUT

 = 220µF || 1µF

 

Load Step = 75 to 50% of I

OUT

 Max.:

    

  Peak Deviation, typ. 

 

120mV 

TBD 

90mV 

90mV 

105mV 

TBD 

50mV

    

  Settling Time to ±1% of Final Value, typ. 

 

150µs 

TBD 

150µs 

70µs 

65µs 

TBD 

25µs

    

Switching Frequency (min./typ./max. kHz) 

120/150/180  120/150/180  170/185/200  230/255/280  132/147/162  220/240/260  190/210/230

Dynamic Load Response and Switching Frequency

DATEL has performed extensive evaluations, under assorted capacitive-load 
conditions, of the dynamic-load capabilities (i.e., the transient or step 
response) of USQ Series DC/DC Converters. In particular, we have evalu-
ated devices using the output capacitive-load conditions we use for our 
routine production testing (10µF tantalums in parallel with 1µF ceramics), as 
well as the load conditions many of our competitors use (220µF tantalums 
in parallel with 1µF ceramics) when specifying the dynamic performance of 
their devices.

➀ 

The listed pair of parallel output capacitors consists of a tantalum in parallel with a multi-layer ceramic.

➁ 

I

O

/

t = 1A/1µs, V

IN

 = 48V, T

C

 = 25°C.

To avoid the added cost of constantly changing test fixtures, we have veri-
fied, during our device characterization/verification testing, that 100% testing 
under the former conditions (the 100µF || 1µF load), which we guarantee, 
correlates extremely well with the latter conditions, for which we and most of 
our competitors simply list typicals.

If you have any questions about our test methods or would like us to perform 
additional testing under your specific load conditions, please contact our 
Applications Engineering Group.

10

2 0 A ,   S I N G L E   O U T P U T   D C / D C   C O N V E R T E R S

Summary of Contents for 20A

Page 1: ...ion 1500Vdc superior ef ciency to 91 tight regula tion to 0 05 max line and load low noise to 50mVp p quick step response 200 sec and an array of protection features I O protection includes input unde...

Page 2: ...USQ Series have no minimum load requirements and will regulate within spec under no load conditions with perhaps a slight increase in ripple noise Additionally 1 2V 1 5V 1 8V 2 5V and 5V models are u...

Page 3: ...5 x 2 28 x 0 40 36 8 x 57 9 x 10 2mm Case Material Cast aluminum Baseplate Material Aluminum Shielding Neither the aluminum case nor baseplate are connected to a package pin Pin Material Brass solder...

Page 4: ...ring Input Ripple Current CIN VIN CBUS LBUS CIN 33 F ESR 700m 100kHz CBUS 220 F ESR 100m 100kHz LBUS 12 H 3 1 INPUT INPUT CURRENT PROBE TO OSCILLOSCOPE C1 C1 1 F CERAMIC C2 10 F TANTALUM LOAD 2 3 INCH...

Page 5: ...iate another shutdown cycle This on off cycling is referred to as hiccup mode Input Reverse Polarity Protection If the input voltage polarity is accidentally reversed an internal diode will become for...

Page 6: ...usted output accuracy VO desired output voltage Standard USQ s have a positive trim where a single resistor connected from the Trim pin pin 6 to the Sense pin 7 will increase the output voltage A resi...

Page 7: ...igure 9 USQ 1 8Trim Up Resistance vs Increase VOUT 0 1 2 3 4 5 6 7 8 9 10 VOUT INCREASE RESISTANCE 1 x107 1 x106 1 x105 1 x104 Figure 10 USQ 2 5Trim Up Resistance vs Increase VOUT 0 1 2 3 4 5 6 7 8 9...

Page 8: ...ce vs Decrease VOUT 8 0 2 4 6 8 10 12 14 16 18 20 VOUT DECREASE RESISTANCE 1 x106 1 x105 1 x104 1 x103 Figure 17 USQ 1 2Trim Down Resistance vs Decrease VOUT Trim Up Resistance vs Percentage Increase...

Page 9: ...Sense in conjunction with trim adjustment of the output voltage can cause the overvoltage protection circuitry to activate see Performance Speci ca tions for overvoltage limits Power derating is based...

Page 10: ...ensive evaluations under assorted capacitive load conditions of the dynamic load capabilities i e the transient or step response of USQ Series DC DC Converters In particular we have evalu ated devices...

Page 11: ...iciency VIN 36V VIN 48V VIN 75V Start Up from Remote On Off Control VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 2V div 1 5VOUT pin 8 Remote On Off Control pin 2 Start Up from VIN...

Page 12: ...COUT 10 F tantalum 1 F ceramic 2msec div 1V div 20V div 1 5VOUT pin 8 Input pin 3 Start Up from Remote On Off Control VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 2V div 1 5VOUT pi...

Page 13: ...VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 2V div 1 8VOUT pin 8 Remote On Off Control pin 2 Start Up from VIN VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 20...

Page 14: ...COUT 10 F tantalum 1 F ceramic 2msec div 1V div 20V div 2 5VOUT pin 8 Input pin 3 Start Up from Remote On Off Control VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 2V div 2 5VOUT pi...

Page 15: ...VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 2V div 3 3VOUT pin 8 Remote On Off Control pin 2 Start Up from VIN VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 20...

Page 16: ...COUT 10 F tantalum 1 F ceramic 2msec div 1V div 20V div 5VOUT pin 8 Input pin 3 Start Up from Remote On Off Control VIN 48V IOUT 20A COUT 10 F tantalum 1 F ceramic 2msec div 1V div 5V div 5VOUT pin 8...

Page 17: ...USQ Models Typical Performance Curves for 5VOUT Models 17 2 0 A S I N G L E O U T P U T D C D C C O N V E R T E R S...

Page 18: ...1 to pin 3 VIN 48V no heat sink Output Current Amps Ambient Temperature C 10 8 6 4 2 0 40 10 0 10 20 30 40 50 60 70 80 90 100 Natural Convection 200 lfm 400 lfm 600 lfm USQ 12 8 3 D48 Output Current v...

Page 19: ...60 65 70 75 80 85 200 lfm 400 lfm USQ 12 8 3 D24 Output Current vs Ambient Temperature Transverse air flow pin 1 to pin 3 VIN 24V no heat sink Output Current Amps Ambient Temperature C 9 8 7 6 5 4 3...

Page 20: ...ol VIN 48V IOUT 6 7A COUT 10 F tantalum 1 F ceramic 2msec div 5V div 2V div 15VOUT pin 8 Remote On Off Control pin 2 Start Up from VIN VIN 48V IOUT 6 7A COUT 10 F tantalum 1 F ceramic 2msec div 5V div...

Page 21: ...l VIN 48V IOUT 4 2A COUT 10 F tantalum 1 F ceramic 2msec div 10V div 2V div 24VOUT pin 8 Remote On Off Control pin 2 Start Up from VIN VIN 48V IOUT 4 2A COUT 10 F tantalum 1 F ceramic 2msec div 10V di...

Page 22: ...ed herein or the use of other technical information contained herein will not infringe upon existing or future patent rights The descriptions contained herein do not imply the granting of licenses to...

Reviews: