background image

PRELIMINARY

CY14B104LA, CY14B104NA

Document #: 001-49918 Rev. *A

Page 4 of 23

Device Operation

The CY14B104LA/CY14B104NA nvSRAM is made up of two
functional components paired in the same physical cell. They are
a SRAM memory cell and a nonvolatile QuantumTrap cell. The
SRAM memory cell operates as a standard fast static RAM. Data
in the SRAM is transferred to the nonvolatile cell (the STORE
operation), or from the nonvolatile cell to the SRAM (the RECALL
operation). Using this unique architecture, all cells are stored and
recalled in parallel. During the STORE and RECALL operations,
SRAM read and write operations are inhibited. The
CY14B104LA/CY14B104NA supports infinite reads and writes
similar to a typical SRAM. In addition, it provides infinite RECALL
operations from the nonvolatile cells and up to 200K STORE
operations. See the

 

Truth Table For SRAM Operations

 on page

16

 

for a complete description of read and write modes.

SRAM Read

The CY14B104LA/CY14B104NA performs a read cycle when
CE and OE are LOW and WE and HSB are HIGH. The address
specified on pins A

0-18

 

or A

0-17

 determines which of the 524,288

data bytes or 262,144 words of 16 bits each are accessed. Byte
enables (BHE, BLE) determine which bytes are enabled to the
output, in the case of 16-bit words. When the read is initiated by
an address transition, the outputs are valid after a delay of t

AA

(read cycle 1). If the read is initiated by CE or OE, the outputs
are valid at t

ACE

 or at t

DOE

, whichever is later (read cycle 2). The

data output repeatedly responds to address changes within the
t

AA

 access time without the need for transitions on any control

input pins. This remains valid until another address change or
until CE or OE is brought HIGH, or WE or HSB is brought LOW.

SRAM Write

A write cycle is performed when CE and WE are LOW and HSB
is HIGH. The address inputs must be stable before entering the
write cycle and must remain stable until CE or WE goes HIGH at
the end of the cycle. The data on the common I/O pins DQ

0–15

are written into the memory if the data is valid t

SD

 before the end

of a WE controlled write or before the end of an CE controlled
write. The Byte Enable inputs (BHE, BLE) determine which bytes
are written, in the case of 16-bit words. It is recommended that
OE be kept HIGH during the entire write cycle to avoid data bus
contention on common I/O lines. If OE is left LOW, internal
circuitry turns off the output buffers t

HZWE 

after WE goes LOW.

AutoStore Operation

The CY14B104LA/CY14B104NA stores data to the nvSRAM
using one of the following three storage operations: Hardware
Store activated by HSB; Software Store activated by an address
sequence; AutoStore on device power down. The AutoStore
operation is a unique feature of QuantumTrap technology and is
enabled by default on the CY14B104LA/CY14B104NA.

During a normal operation, the device draws current from V

CC

 to

charge a capacitor connected to the V

CAP

 pin. This stored

charge is used by the chip to perform a single STORE operation.
If the voltage on the V

CC

 pin drops below V

SWITCH

, the part

automatically disconnects the V

CAP

 pin from V

CC

. A STORE

operation is initiated with power provided by the V

CAP

 capacitor.

Figure 4 

shows the proper connection of the storage capacitor

(V

CAP

) for automatic store operation. Refer to 

DC Electrical

Characteristics

 on page 8 for the size of V

CAP

. The voltage on

the V

CAP

 pin is driven to V

CC 

by a regulator on the chip. A pull

up should be placed on WE to hold it inactive during power up.
This pull up is effective only if the WE signal is tri-state during
power up. Many MPUs tri-state their controls on power up. This
should be verified when using the pull up. When the nvSRAM
comes out of power-on-recall, the MPU must be active or the WE
held inactive until the MPU comes out of reset.

To reduce unnecessary nonvolatile stores, AutoStore and
hardware store operations are ignored unless at least one write
operation has taken place since the most recent STORE or
RECALL cycle. Software initiated STORE cycles are performed
regardless of whether a write operation has taken place. The
HSB signal is monitored by the system to detect if an AutoStore
cycle is in progress.

Figure 4.  AutoStore Mode

Hardware STORE Operation

The CY14B104LA/CY14B104NA provides the HSB

[6]

 pin to

control and acknowledge the STORE operations. Use the HSB
pin to request a hardware STORE cycle. When the HSB pin is
driven LOW, the CY14B104LA/CY14B104NA conditionally
initiates a STORE operation after t

DELAY

. An actual STORE cycle

only begins if a write to the SRAM has taken place since the last
STORE or RECALL cycle. The HSB pin also acts as an open
drain driver that is internally driven LOW to indicate a busy
condition when the STORE (initiated by any means) is in
progress.

SRAM read and write operations that are in progress when HSB
is driven LOW by any means are given time to complete before
the STORE operation is initiated. After HSB goes LOW, the
CY14B104LA/CY14B104NA continues SRAM operations for
t

DELAY

. If a write is in progress when HSB is pulled LOW it is

enabled a time, t

DELAY

 to complete. However, any SRAM write

cycles requested after HSB goes LOW are inhibited until HSB
returns HIGH. In case the write latch is not set, HSB is not driven
LOW by the CY14B104LA/CY14B104NA. But any SRAM read
and write cycles are inhibited until HSB is returned HIGH by MPU
or other external source.

During any STORE operation, regardless of how it is initiated,
the CY14B104LA/CY14B104NA continues to drive the HSB pin
LOW, releasing it only when the STORE is complete. When the
STORE operation is completed, the CY14B104LA/CY14B104NA

0.1uF

Vcc

10

kOhm

V

CAP

Vcc

WE

V

CAP

V

SS

[+] Feedback 

Summary of Contents for CY14B104LA

Page 1: ...volatile element in each memory cell The memory is organized as 512K bytes of 8 bits each or 256K words of 16 bits each The embedded nonvolatile elements incorporate QuantumTrap technology producing the world s most reliable nonvolatile memory The SRAM provides infinite read and write cycles while independent nonvolatile data resides in the highly reliable QuantumTrap cell Data transfers from the ...

Page 2: ...expansion for 8 Mbit NC pin not connected to die 5 Address expansion for 16 Mbit NC pin not connected to die 6 HSB pin is not available in 44 TSOP II x16 package NC A8 NC NC VSS DQ6 DQ5 DQ4 VCC A13 DQ3 A12 DQ2 DQ1 DQ0 OE A9 CE NC A0 A1 A2 A3 A4 A5 A6 A11 A7 A14 A15 A16 A17 A18 NC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43...

Page 3: ...e LOW Controls DQ15 DQ8 BLE Input Byte Low Enable Active LOW Controls DQ7 DQ0 VSS Ground Ground for the Device Must be connected to the ground of the system VCC Power Supply Power Supply Inputs to the Device HSB 6 Input Output Hardware Store Busy HSB When LOW this output indicates that a hardware store is in progress When pulled LOW external to the chip it initiates a nonvolatile STORE operation A...

Page 4: ... QuantumTrap technology and is enabled by default on the CY14B104LA CY14B104NA During a normal operation the device draws current from VCC to charge a capacitor connected to the VCAP pin This stored charge is used by the chip to perform a single STORE operation If the voltage on the VCC pin drops below VSWITCH the part automatically disconnects the VCAP pin from VCC A STORE operation is initiated ...

Page 5: ...he chip is disabled HSB is driven LOW It is important to use read cycles and not write cycles in the sequence although it is not necessary that OE be LOW for a valid sequence After the tSTORE cycle time is fulfilled the SRAM is activated again for the read and write operation Software RECALL Transfer the data from the nonvolatile memory to the SRAM with a software address sequence A software RECAL...

Page 6: ...are must be issued to save the AutoStore state through subsequent power down cycles The part comes from the factory with AutoStore enabled Data Protection The CY14B104LA CY14B104NA protects data from corruption during low voltage conditions by inhibiting all externally initiated STORE and write operations The low voltage condition is detected when VCC VSWITCH If the CY14B104LA CY14B104NA is in a w...

Page 7: ...pattern that is complex 4 byte pattern of 46 E6 49 53 hex or more random bytes as part of the final system manufac turing test to ensure these system routines work consistently Power up boot firmware routines should rewrite the nvSRAM into the desired state for example autostore enabled While the nvSRAM is shipped in a preset state best practice is to again rewrite the nvSRAM into the desired stat...

Page 8: ...ustrial 70 70 52 mA mA mA ICC2 Average VCC Current during STORE All Inputs Don t Care VCC Max Average current for duration tSTORE 10 mA ICC3 9 AverageVCC Currentat tRC 200 ns 3V 25 C typical All I P cycling at CMOS levels Values obtained without output loads IOUT 0 mA 35 mA ICC4 Average VCAP Current during AutoStore Cycle All Inputs Don t Care VCC Max Average current for duration tSTORE 5 mA ISB V...

Page 9: ...ut Capacitance TA 25 C f 1 MHz VCC 0 to 3 0V 7 pF COUT Output Capacitance 7 pF Thermal Resistance In the following table the thermal resistance parameters are listed 12 Parameter Description Test Conditions 48 FBGA 44 TSOP II 54 TSOP II Unit ΘJA Thermal Resistance Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA ...

Page 10: ... 0 0 ns tHZBE 12 Byte Disable to Output Inactive 8 10 15 ns SRAM Write Cycle tWC tWC Write Cycle Time 20 25 45 ns tPWE tWP Write Pulse Width 15 20 30 ns tSCE tCW Chip Enable To End of Write 15 20 30 ns tSD tDW Data Setup to End of Write 8 10 15 ns tHD tDH Data Hold After End of Write 0 0 0 ns tAW tAW Address Setup to End of Write 15 20 30 ns tSA tAS Address Setup to Start of Write 0 0 0 ns tHA tWR...

Page 11: ...ddress Valid Address Data Output Output Data Valid Standby Active High Impedance CE OE BHE BLE ICC tHZCE tRC tACE tAA tLZCE tDOE tLZOE tDBE tLZBE tPU tPD tHZBE tHZOE Data Output Data Input Input Data Valid High Impedance Address Valid Address Previous Data tWC tSCE tHA tBW tAW tPWE tSA tSD tHD tHZWE tLZWE WE BHE BLE CE Note 18 CE or WE must be VIH during address transitions Feedback ...

Page 12: ... Figure 10 SRAM Write Cycle 3 BHE and BLE Controlled 3 16 17 18 Data Output Data Input Input Data Valid High Impedance Address Valid Address tWC tSD tHD BHE BLE WE CE tSA tSCE tHA tBW tPWE Data Output Data Input Input Data Valid High Impedance Address Valid Address tWC tSD tHD BHE BLE WE CE tSCE tSA tBW tHA tAW tPWE Feedback ...

Page 13: ...p RECALL 22 VSWITCH VHDIS VVCCRISE tSTORE tSTORE tHHHD tHHHD tDELAY tDELAY tLZHSB tLZHSB tHRECALL tHRECALL HSB OUT Autostore POWER UP RECALL Read Write Inhibited RWI POWER UP RECALL Read Write BROWN OUT Autostore POWER UP RECALL Read Write POWER DOWN Autostore Note20 Note20 Note23 Notes 19 tHRECALL starts from the time VCC rises above VSWITCH 20 If an SRAM write has not taken place since the last ...

Page 14: ...0 30 ns tHA Address Hold Time 0 0 0 ns tRECALL RECALL Duration 200 200 200 μs Switching Waveforms Figure 12 CE and OE Controlled Software STORE RECALL Cycle 25 Figure 13 AutoStore Enable Disable Cycle W5 W5 W6 W W W6 W W W W W W W W6725 W5 W W 6 LJK PSHGDQFH GGUHVV GGUHVV GGUHVV 2 6 6725 RQO 4 7 5 W5 W5 W6 W W W6 W W W W W W W GGUHVV GGUHVV GGUHVV 2 4 7 5 W66 Notes 24 The software sequence is cloc...

Page 15: ...Y tSTORE tHHHD tLZHSB Write latch set Write latch not set HSB IN HSB OUT DQ Data Out RWI HSB IN HSB OUT RWI HSB pin is driven high to VCC only by Internal SRAM is disabled as long as HSB IN is driven low HSB driver is disabled tDHSB 100kOhm resistor Address 1 Address 6 Address 1 Address 6 Soft Sequence Command tSS tSS CE Address VCC tSA tCW Soft Sequence Command tCW Notes 26 This is the amount of ...

Page 16: ... CE WE OE BHE 3 BLE 3 Inputs Outputs 2 Mode Power H X X X X High Z Deselect Power down Standby L X X H H High Z Output Disabled Active L H L L L Data Out DQ0 DQ15 Read Active L H L H L Data Out DQ0 DQ7 DQ8 DQ15 in High Z Read Active L H L L H Data Out DQ8 DQ15 DQ0 DQ7 in High Z Read Active L H H L L High Z Output Disabled Active L H H H L High Z Output Disabled Active L H H L H High Z Output Disab...

Page 17: ...OP II Commercial CY14B104NA ZSP20XC 51 85160 54 pin TSOP II CY14B104NA ZSP20XIT 51 85160 54 pin TSOP II Industrial CY14B104NA ZSP20XI 51 85160 54 pin TSOP II 25 CY14B104LA ZS25XCT 51 85087 44 pin TSOP II Commercial CY14B104LA ZS25XC 51 85087 44 pin TSOP II CY14B104LA ZS25XIT 51 85087 44 pin TSOP II Industrial CY14B104LA ZS25XI 51 85087 44 pin TSOP II CY14B104LA BA25XCT 51 85128 48 ball FBGA Commer...

Page 18: ...087 44 pin TSOP II CY14B104NA ZS45XIT 51 85087 44 pin TSOP II Industrial CY14B104NA ZS45XI 51 85087 44 pin TSOP II CY14B104NA BA45XCT 51 85128 48 ball FBGA Commercial CY14B104NA BA45XC 51 85128 48 ball FBGA CY14B104NA BA45XIT 51 85128 48 ball FBGA Industrial CY14B104NA BA45XI 51 85128 48 ball FBGA CY14B104NA ZSP45XCT 51 85160 54 pin TSOP II Commercial CY14B104NA ZSP45XC 51 85160 54 pin TSOP II CY1...

Page 19: ...s 25 25 ns Data Bus L x8 N x16 Density 104 4 Mb Voltage B 3 0V Cypress CY 14 B 104 L A ZS P 20 X C T NVSRAM 14 Auto Store Software Store Hardware Store Temperature C Commercial 0 to 70 C I Industrial 40 to 85 C Package BA 48 FBGA ZS TSOP II 45 45 ns X Pb Free Blank SnPb P 54 Pin Blank 44 Pin 48 Ball Die Revision Blank No Rev A 1st Rev Feedback ...

Page 20: ...70 PLANE SEATING PIN 1 I D 44 1 18 517 0 729 0 800 BSC 0 5 0 400 0 016 0 300 0 012 EJECTOR PIN R G O K E A X S 11 735 0 462 10 058 0 396 10 262 0 404 1 194 0 047 0 991 0 039 0 150 0 0059 0 050 0 0020 0 0315 18 313 0 721 10 058 0 396 10 262 0 404 0 597 0 0235 0 406 0 0160 0 210 0 0083 0 120 0 0047 BASE PLANE 0 10 004 22 23 TOP VIEW BOTTOM VIEW 51 85087 A Feedback ...

Page 21: ...age Diagrams continued A 1 A1 CORNER 0 75 0 75 Ø0 30 0 05 48X Ø0 25 M C A B Ø0 05 M C B A 0 15 4X 0 21 0 05 1 20 MAX C SEATING PLANE 0 53 0 05 0 25 C 0 15 C A1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 3 75 5 25 B C D E F G H 6 5 4 6 5 2 3 1 D H F G E C B A 6 00 0 10 10 00 0 10 A 10 00 0 10 6 00 0 10 B 1 875 2 625 0 36 51 85128 D Feedback ...

Page 22: ...PRELIMINARY CY14B104LA CY14B104NA Document 001 49918 Rev A Page 22 of 23 Figure 18 54 Pin TSOP II 51 85160 Package Diagrams continued 51 85160 Feedback ...

Page 23: ...fication translation compilation or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE Cypress reserves the right to make...

Reviews: