background image

STK14D88

Document Number: 001-52037 Rev. **

Page 11 of 17

nvSRAM Operation

nvSRAM

The STK14D88 nvSRAM is made up of two functional compo-
nents paired in the same physical cell. These are the SRAM
memory cell and a nonvolatile QuantumTrap™ cell. The SRAM
memory cell operates like a standard fast static RAM. Data in the
SRAM can be transferred to the nonvolatile cell (the STORE
operation), or from the nonvolatile cell to SRAM (the RECALL
operation). This unique architecture allows all cells to be stored
and recalled in parallel. During the STORE and RECALL opera-
tions SRAM READ and WRITE operations are inhibited. The
STK14D88 supports unlimited read and writes like a typical
SRAM. In addition, it provides unlimited RECALL operations
from the nonvolatile cells and up to 200K STORE operations.

SRAM READ

The STK14D88 performs a READ cycle whenever E and G are
low while W and HSB are high. The address specified on pins
A

0-16

 determine which of the 32,768 data bytes will be accessed.

When the READ is initiated by an address transition, the outputs
will be valid after a delay of t

AVQV

 (READ cycle #1). If the READ

is initiated by E and G, the outputs will be valid at t

ELQV

 or at

t

GLQV

, whichever is later (READ cycle #2). The data outputs will

repeatedly respond to address changes within the t

AVQV

 access

time without the need for transitions on any control input pins,
and will remain valid until another address change or until either
E or G is brought high, or W or HSB is brought low.

SRAM WRITE

A WRITE cycle is performed whenever E and W are low and HSB
is high. The address inputs must be stable prior to entering the
WRITE cycle and must remain stable until either E or W goes
high at the end of the cycle. The data on the common I/O pins
DQ

0-7

 will be written into memory if it is valid t

DVWH

 before the

end of a W controlled WRITE or t

DVEH

 before the end of an E

controlled WRITE.

It is recommended that G be kept high during the entire WRITE
cycle to avoid data bus contention on common I/O lines. If G is
left low, internal circuitry will turn off the output buffers t

WLQZ

 after

W

 goes low.

AutoStore Operation

The STK14D88 stores data to nvSRAM using one of three
storage operations. These three operations are Hardware Store
(activated by HSB), Software Store (activated by an address
sequence), and AutoStore (on power down).

AutoStore operation is a unique feature of Cypress Quantum
Trap technology is enabled by default on the STK14D88.

During normal operation, the device will draw current from V

CC

to charge a capacitor connected to the V

CAP

 pin. This stored

charge will be used by the chip to perform a single STORE
operation. If the voltage on the V

CC

 pin drops below VSWITCH,

the part will automatically disconnect the V

CAP

 pin from V

CC

. A

STORE operation will be initiated with power provided by the
V

CAP

 capacitor.

Figure 12

 shows the proper connection of the storage capacitor

(V

CAP

) for automatic store operation. Refer to the DC CHARAC-

TERISTICS table for the size of the capacitor. The voltage on the

V

CAP

 pin is driven to 5V by a charge pump internal to the chip. A

pull up should be placed on W to hold it inactive during power up.

To reduce unneeded nonvolatile stores, AutoStore and
Hardware Store operations will be ignored unless at least one
WRITE operation has taken place since the most recent STORE
or RECALL cycle. Software initiated STORE cycles are
performed regardless of whether a WRITE operation has taken
place. The HSB signal can be monitored by the system to detect
an AutoStore cycle is in progress.

Figure 12.  AutoStore Mode

Hardware STORE (HSB) Operation

The STK14D88 provides the HSB pin for controlling and
acknowledging the STORE operations. The HSB pin can be
used to request a hardware STORE cycle. When the HSB pin is
driven low, the STK14D88 will conditionally initiate a STORE
operation after t

DELAY

. An actual STORE cycle will only begin if

a WRITE to the SRAM took place since the last STORE or
RECALL cycle. The HSB pin has a very resistive pull up and is
internally driven low to indicate a busy condition while the
STORE (initiated by any means) is in progress. This pin should
be externally pulled up if it is used to drive other inputs.

SRAM READ and WRITE operations that are in progress when
HSB is driven low by any means are given time to complete
before the STORE operation is initiated. After HSB goes low, the
STK14D88 will continue SRAM operations for t

DELAY

. During

t

DELAY

, multiple SRAM READ operations may take place. If a

WRITE is in progress when HSB is pulled low, it will be allowed
a time, t

DELAY

, to complete. However, any SRAM WRITE cycles

requested after HSB goes low will be inhibited until HSB returns
high.

If HSB is not used, it should be left unconnected.

Software STORE

Data can be transferred from the SRAM to the nonvolatile
memory by a software address sequence. The STK14D88
software STORE cycle is initiated by executing sequential E
controlled READ cycles from six specific address locations in
exact order. During the STORE cycle, previous data is erased
and then the new data is programmed into the nonvolatile
elements. Once a STORE cycle is initiated, further memory
inputs and outputs are disabled until the cycle is completed.

V

CC

V

CA

P

10

k

 O

h

m

0.

F

V

CC

V

CAP

W

[+] Feedback 

Summary of Contents for Perform STK14D88

Page 1: ... element included with each memory cell The SRAM provides fast access and cycle times ease of use and unlimited read and write endurance of a normal SRAM Data transfers automatically to the nonvolatile storage cells when power loss is detected the STORE operation On power up data is automatically restored to the SRAM the RECALL operation Both STORE and RECALL operations are also available under so...

Page 2: ...al to the chip it will initiate a nonvolatile STORE operation A weak pull up resistor keeps this pin high if not connected Connection Optional VCAP Power Supply AutoStore Capacitor Supplies power to nvSRAM during power loss to store data from SRAM to nonvolatile storage elements VSS Power Supply Ground NC No Connect Unlabeled pins have no internal connections 48 Pin SSOP TOP VSS A14 A12 A7 A6 DQ0 ...

Page 3: ...Unit Notes Min Max Min Max ICC1 Average VCC Current 65 55 50 70 60 55 mA mA mA tAVAV 25ns tAVAV 35ns tAVAV 45ns Dependent on output loading and cycle rate Values obtained without output loads ICC2 Average VCC Current during STORE 3 3 mA All Inputs Don t Care VCC max Average current for duration of STORE cycle tSTORE ICC3 Average VCC Current at tAVAV 200ns 3V 25 C Typical 10 10 mA W V CC 0 2V All O...

Page 4: ... Specs tHZ tLZ tWLQZ tWHQZ tGLQX tGHQZ Capacitance Parameter 3 Description Test Conditions Max Unit Conditions CIN Input Capacitance TA 25 C f 1 MHz 7 pF ΔV 0 to 3V COUT Output Capacitance 7 pF ΔV 0 to 3V DC Characteristics continued VCC 2 7V 3 6V Symbol Parameter 2 Commercial Industrial Unit Notes Min Max Min Max Input Pulse Levels 0V to 3V Input Rise and Fall Times 5 ns Input and Output Timing R...

Page 5: ...ress Change or Chip Enable to Output Active 3 3 3 ns 7 tEHQZ 6 tHZ Address Change or Chip Disable to Output Inactive 10 13 15 ns 8 tGLQX tOLZ Output Enable to Output Active 0 0 0 ns 9 tGHQZ 6 tOHZ Output Disable to Output Inactive 10 13 15 ns 10 tELICCH 3 tPA Chip Enable to Power Active 0 0 0 ns 11 tEHICCL 3 tPS Chip Disable to Power Standby 25 35 45 ns Figure 4 SRAM READ Cycle 1 Address Controlle...

Page 6: ...ress Set up to Start of Write 0 0 0 ns 19 tWHAX tEHAX tWR Address Hold after End of Write 0 0 0 ns 20 tWLQZ 6 8 tWZ Write Enable to Output Disable 10 13 15 ns 21 tWHQX tOW Output Active after End of Write 3 3 3 ns Figure 6 SRAM WRITE Cycle 1 W Controlled 8 9 Figure 7 SRAM WRITE Cycle 2 E Controlled 8 9 DATA OUT E ADDRESS W DATA IN PREVIOUS DATA 12 tAVAV 13 tWHDX 19 tWHAX 13 tWLWH 18 tAVWL 17 tAVWH...

Page 7: ...4 VSWITCH Low Voltage Trigger Level 2 65 V 25 VCCRISE Vcc Rise Time 150 μs Figure 8 AutoStore POWER UP RECALL Note Read and Write cycles are ignored during STORE RECALL and while VCC is below VSWITCH 22 23 23 22 22 Notes 10 tHRECALL starts from the time VCC rises above VSWITCH 11 If an SRAM WRITE has not taken place since the last nonvolatile cycle no STORE will take place 12 Industrial Grade Devi...

Page 8: ...30 ns 29 tEHAX Address Hold Time 1 1 1 ns 30 tRECALL RECALL Duration 50 50 50 μs Figure 9 E and G Controlled Software STORE RECALL Cycle 14 DATA VALID HIGH IMPEDANCE ADDRESS 6 ADDRESS 1 DATA VALID 26 tAVAV DATA VALID DQ DATA E ADDRESS 23 30 tSTORE tRECALL 26 tAVAV 27 tAVEL 28 tELEH 29 tELAX Notes 13 The software sequence is clocked on the falling edge of E controlled READs 14 The six consecutive a...

Page 9: ...STK14D88 Unit Notes Standard Min Max 33 tSS Soft Sequence Processing Time 70 µs 16 17 Figure 11 Software Sequence Commands 33 33 Notes 15 Read and Write cycles in progress before HSB is asserted are given this minimum amount of time to complete 16 This is the amount of time that it takes to take action on a soft sequence command Vcc power must remain high to effectively register command 17 Command...

Page 10: ...Output Data Output Data Active 18 19 20 L H L 0x0E38 0x31C7 0x03E0 0x3C1F 0x303F Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Output Data Output Data Output Data Output Data Output Data Active 18 19 20 0x0FC0 Nonvolatile Store Output High Z ICC2 L H L 0x0E38 0x31C7 0x03E0 0x3C1F 0x303F 0x0C63 Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Nonvolatile Recall Output Data Output Data Output D...

Page 11: ...citor connected to the VCAP pin This stored charge will be used by the chip to perform a single STORE operation If the voltage on the VCC pin drops below VSWITCH the part will automatically disconnect the VCAP pin from VCC A STORE operation will be initiated with power provided by the VCAP capacitor Figure 12 shows the proper connection of the storage capacitor VCAP for automatic store operation R...

Page 12: ...cells in an nvSRAM are programmed on the test floor during final test and quality assurance Incoming inspection routines at customer or contract manufacturer s sites will sometimes reprogram these values Final NV patterns are typically repeating patterns of AA 55 00 FF A5 or 5A End product s firmware should not assume an NV array is in a set programmed state Routines that check memory content valu...

Page 13: ...id READ 5 Read Address 0x303F Valid READ 6 Read Address 0x03F8 AutoStore Disable The AutoStore can be re enabled by initiating an AutoStore Enable sequence A sequence of READ operations is performed in a manner similar to the software RECALL initiation To initiate the AutoStore Enable sequence the following sequence of E controlled or G controlled READ operations must be performed 1 Read Address 0...

Page 14: ...ore nvSRAM SSOP48 300 35 ns Commercial STK14D88 RF45 3V 32Kx8 AutoStore nvSRAM SSOP48 300 45 ns Commercial STK14D88 RF25TR 3V 32Kx8 AutoStore nvSRAM SSOP48 300 25 ns Commercial STK14D88 RF35TR 3V 32Kx8 AutoStore nvSRAM SSOP48 300 35 ns Commercial STK14D88 RF45TR 3V 32Kx8 AutoStore nvSRAM SSOP48 300 45 ns Commercial STK14D88 NF25I 3V 32Kx8 AutoStore nvSRAM SOP32 300 25 ns Industrial STK14D88 NF35I ...

Page 15: ...N INCHES MM MIN MAX 0 292 7 416 0 299 7 594 0 405 10 287 0 419 10 642 0 050 1 270 TYP 0 090 2 286 0 100 2 540 0 004 0 101 0 0100 0 254 0 006 0 152 0 012 0 304 0 021 0 533 0 041 1 041 0 026 0 660 0 032 0 812 0 004 0 101 REFERENCE JEDEC MO 119 PART S32 3 STANDARD PKG SZ32 3 LEAD FREE PKG 0 014 0 355 0 020 0 508 0 810 20 574 0 822 20 878 51 85127 A Feedback ...

Page 16: ...STK14D88 Document Number 001 52037 Rev Page 16 of 17 Figure 15 48 Pin 300 Mil SSOP 51 85061 Package Diagrams continued 51 85061 C Feedback ...

Page 17: ...it as specified in the applicable agreement Any reproduction modification translation compilation or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FI...

Reviews: