Cypress Semiconductor CY7C1516KV18 Specification Sheet Download Page 12

CY7C1516KV18, CY7C1527KV18
CY7C1518KV18, CY7C1520KV18

Document Number: 001-00437 Rev. *E

Page 12 of 30

IEEE 1149.1 Serial Boundary Scan (JTAG)

These SRAMs incorporate a serial boundary scan Test Access

Port (TAP) in the FBGA package. This part is fully compliant with

IEEE Standard #1149.1-2001. The TAP operates using JEDEC

standard 1.8V IO logic levels.

Disabling the JTAG Feature

It is possible to operate the SRAM without using the JTAG

feature. To disable the TAP controller, TCK must be tied LOW

(V

SS

) to prevent clocking of the device. TDI and TMS are inter-

nally pulled up and may be unconnected. They may alternatively

be connected to V

DD

 through a pull up resistor. TDO must be left

unconnected. Upon power up, the device comes up in a reset

state, which does not interfere with the operation of the device.

Test Access Port—Test Clock

The test clock is used only with the TAP controller. All inputs are

captured on the rising edge of TCK. All outputs are driven from

the falling edge of TCK.

Test Mode Select (TMS)

The TMS input is used to give commands to the TAP controller

and is sampled on the rising edge of TCK. This pin may be left

unconnected if the TAP is not used. The pin is pulled up inter-

nally, resulting in a logic HIGH level.

Test Data-In (TDI)

The TDI pin is used to serially input information into the registers

and can be connected to the input of any of the registers. The

register between TDI and TDO is chosen by the instruction that

is loaded into the TAP instruction register. For information about

loading the instruction register, see the 

TAP Controller State

Diagram

 on page 14. TDI is internally pulled up and can be

unconnected if the TAP is unused in an application. TDI is

connected to the most significant bit (MSB) on any register.

Test Data-Out (TDO)

The TDO output pin is used to serially clock data out from the

registers. The output is active, depending upon the current state

of the TAP state machine (see 

Instruction Codes

 on page 17).

The output changes on the falling edge of TCK. TDO is

connected to the least significant bit (LSB) of any register.

Performing a TAP Reset

A Reset is performed by forcing TMS HIGH (V

DD

) for five rising

edges of TCK. This Reset does not affect the operation of the

SRAM and is performed when the SRAM is operating. At power

up, the TAP is reset internally to ensure that TDO comes up in a

High-Z state.

TAP Registers

Registers are connected between the TDI and TDO pins to scan

the data in and out of the SRAM test circuitry. Only one register

can be selected at a time through the instruction registers. Data

is serially loaded into the TDI pin on the rising edge of TCK. Data

is output on the TDO pin on the falling edge of TCK.

Instruction Register

Three-bit instructions are serially loaded into the instruction

register. This register is loaded when it is placed between the TDI

and TDO pins, as shown in 

TAP Controller Block Diagram

 on

page 15. Upon power up, the instruction register is loaded with

the IDCODE instruction. It is also loaded with the IDCODE

instruction if the controller is placed in a reset state, as described

in the previous section.
When the TAP controller is in the Capture-IR state, the two least

significant bits are loaded with a binary “01” pattern to allow for

fault isolation of the board level serial test path.

Bypass Register

To save time when serially shifting data through registers, it is

sometimes advantageous to skip certain chips. The bypass

register is a single-bit register that can be placed between TDI

and TDO pins. This enables shifting of data through the SRAM

with minimal delay. The bypass register is set LOW (V

SS

) when

the BYPASS instruction is executed.

Boundary Scan Register

The boundary scan register is connected to all the input and

output pins on the SRAM. Several No Connect (NC) pins are also

included in the scan register to reserve pins for higher density

devices.
The boundary scan register is loaded with the contents of the

RAM input and output ring when the TAP controller is in the

Capture-DR state and is then placed between the TDI and TDO

pins when the controller is moved to the Shift-DR state. The

EXTEST, SAMPLE/PRELOAD, and SAMPLE Z instructions are

used to capture the contents of the input and output ring.
The 

Boundary Scan Order

 on page 18 shows the order in which

the bits are connected. Each bit corresponds to one of the bumps

on the SRAM package. The MSB of the register is connected to

TDI, and the LSB is connected to TDO.

Identification (ID) Register

The ID register is loaded with a vendor-specific, 32-bit code

during the Capture-DR state when the IDCODE command is

loaded in the instruction register. The IDCODE is hardwired into

the SRAM and is shifted out when the TAP controller is in the

Shift-DR state. The ID register has a vendor code and other infor-

mation described in 

Identification Register Definitions

 on page

17.

TAP Instruction Set

Eight different instructions are possible with the three-bit

instruction register. All combinations are listed in 

Instruction

Codes

 on page 17. Three of these instructions are listed as

RESERVED and must not be used. The other five instructions

are described in this section in detail.
Instructions are loaded into the TAP controller during the Shift-IR

state when the instruction register is placed between TDI and

TDO. During this state, instructions are shifted through the

instruction register through the TDI and TDO pins. To execute

the instruction after it is shifted in, the TAP controller must be

moved into the Update-IR state.

[+] Feedback 

Summary of Contents for CY7C1516KV18

Page 1: ...a 1 bit burst counter Addresses for read and write are latched on alternate rising edges of the input K clock Write data is registered on the rising edges of both K and K Read data is driven on the r...

Page 2: ...egister Read Add Decode Read Data Reg R W Output Logic Reg Reg Reg 8 16 8 NWS 1 0 VREF Write Add Decode 8 22 C C 8 LD Control R W DOFF 4M x 8 Array 4M x 8 Array 8 DQ 7 0 8 CQ CQ Write Reg Write Reg CL...

Page 3: ...eg R W Output Logic Reg Reg Reg 18 36 18 BWS 1 0 VREF Write Add Decode 18 22 C C 18 LD Control Burst Logic A0 A 21 1 R W DOFF 2M x 18 Array 2M x 18 Array 21 18 DQ 17 0 18 CQ CQ Write Reg Write Reg CLK...

Page 4: ...NC VDDQ VSS VSS VSS VDDQ NC NC DQ0 M NC NC NC VSS VSS VSS VSS VSS NC NC NC N NC NC NC VSS A A A VSS NC NC NC P NC NC DQ7 A A C A A NC NC NC R TDO TCK A A A C A A A TMS TDI CY7C1527KV18 8M x 9 1 2 3 4...

Page 5: ...A A NC NC DQ0 R TDO TCK A A A C A A A TMS TDI CY7C1520KV18 2M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 144M A R W BWS2 K BWS1 LD A A CQ B NC DQ27 DQ18 A BWS3 K BWS0 A NC NC DQ8 C NC NC DQ28 VSS A A0 A VS...

Page 6: ...onous Address Inputs These address inputs are multiplexed for both read and write operations Internally the device is organized as 8M x 8 2 arrays each of 4M x 8 for CY7C1516KV18 and 8M x 9 2 arrays e...

Page 7: ...cannot be connected directly to GND or left unconnected DOFF Input PLL Turn Off Active LOW Connecting this pin to ground turns off the PLL inside the device The timing in the PLL turned off operation...

Page 8: ...ounter increments the address in a linear fashion On the following K clock rise the data presented to D 17 0 is latched and stored into the 18 bit write data register provided BWS 1 0 are both asserte...

Page 9: ...th respect to K and CQ is generated with respect to K The timing for the echo clocks is shown in the Switching Characteristics on page 23 PLL These chips use a PLL that is designed to function between...

Page 10: ...er byte D 8 0 is written into the device D 17 9 remains unaltered H L L H During the data portion of a write sequence CY7C1516KV18 only the upper nibble D 7 4 is written into the device D 3 0 remains...

Page 11: ...into the device D 35 9 remains unaltered L H H H L H During the data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During the da...

Page 12: ...e falling edge of TCK Instruction Register Three bit instructions are serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in T...

Page 13: ...egister After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD places an...

Page 14: ...ontroller follows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR S...

Page 15: ...t HIGH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 I...

Page 16: ...tTDIH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions...

Page 17: ...Instruction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and T...

Page 18: ...L 7 8P 35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P...

Page 19: ...and clock K K for 20 s to lock the PLL PLL Constraints PLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The PLL functions at frequencies d...

Page 20: ...V VOH Output HIGH Voltage Note 16 VDDQ 2 0 12 VDDQ 2 0 12 V VOL Output LOW Voltage Note 17 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Ou...

Page 21: ...tic 333 MHz x8 290 mA x9 290 x18 290 x36 290 300 MHz x8 280 mA x9 280 x18 280 x36 280 250 MHz x8 270 mA x9 270 x18 270 x36 270 200 MHz x8 250 mA x9 250 x18 250 x36 250 167 MHz x8 250 mA x9 250 x18 250...

Page 22: ...ient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 13 7 C W JC Thermal Resistance Junction to Case 3 73 C W Figure 4 AC Test...

Page 23: ...to K Clock Rise 0 4 0 4 0 5 0 6 0 7 ns tSC tIVKH Control Setup to K Clock Rise LD R W 0 4 0 4 0 5 0 6 0 7 ns tSCDDR tIVKH Double Data Rate Control Setup to Clock K K Rise BWS0 BWS1 BWS2 BWS3 0 3 0 3...

Page 24: ...Z Clock C C Rise to High Z Active to High Z 24 25 0 45 0 45 0 45 0 45 0 50 ns tCLZ tCHQX1 Clock C C Rise to Low Z 24 25 0 45 0 45 0 45 0 45 0 50 ns PLL Timing tKC Var tKC Var Clock Phase Jitter 0 20 0...

Page 25: ...KHKH tKL tCYC A0 D20 D21 D30 D31 Q00 Q11 Q01 Q10 A1 A2 A3 A4 Q41 tCCQO tCQOH tCCQO tCQOH tKL tCYC K K LD R W A DQ C C CQ CQ SA tKH tKHKH tCQD tCQDOH tCQH tCQHCQH Notes 26 Q00 refers to output from add...

Page 26: ...13 x 15 x 1 4 mm Commercial CY7C1527KV18 333BZC CY7C1518KV18 333BZC CY7C1520KV18 333BZC CY7C1516KV18 333BZXC 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Pb Free CY7C1527KV18 333BZXC...

Page 27: ...ay 13 x 15 x 1 4 mm Pb Free CY7C1527KV18 250BZXI CY7C1518KV18 250BZXI CY7C1520KV18 250BZXI 200 CY7C1516KV18 200BZC 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Commercial CY7C1527KV18...

Page 28: ...rray 13 x 15 x 1 4 mm Pb Free CY7C1527KV18 167BZXC CY7C1518KV18 167BZXC CY7C1520KV18 167BZXC CY7C1516KV18 167BZI 51 85180 165 Ball Fine Pitch Ball Grid Array 13 x 15 x 1 4 mm Industrial CY7C1527KV18 1...

Page 29: ...A B 0 05 M C B A 0 15 4X 0 35 0 06 SEATING PLANE 0 53 0 05 0 25 C 0 15 C PIN 1 CORNER TOP VIEW BOTTOM VIEW 2 3 4 5 6 7 8 9 10 10 00 14 00 B C D E F G H J K L M N 11 11 10 9 8 6 7 5 4 3 2 1 P R P R K M...

Page 30: ...RCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE Cypress reserves the right to make changes without further notice to the materials described herein Cypress does not assume any liability arising out...

Reviews: