background image

36-Mbit DDR-II SRAM 2-Word

Burst Architecture

CY7C1416AV18, CY7C1427AV18
CY7C1418AV18, CY7C1420AV18

Cypress Semiconductor Corporation

198 Champion Court

San Jose

,

CA 95134-1709

408-943-2600

Document Number: 38-05616 Rev. *F

 Revised January 29, 2009

Features

36-Mbit density (4M x 8, 4M x 9, 2M x 18, 1M x 36)

300 MHz clock for high bandwidth

2-word burst for reducing address bus frequency

Double Data Rate (DDR) interfaces 
(data transferred at 600MHz) at 300 MHz for DDR-II 

Two input clocks (K and K) for precise DDR timing

SRAM uses rising edges only

Two input clocks for output data (C and C) to minimize clock 
skew and flight time mismatches

Echo clocks (CQ and CQ) simplify data capture in high-speed 
systems

Synchronous internally self-timed writes

1.8V core power supply with HSTL inputs and outputs

Variable drive HSTL output buffers

Expanded HSTL output voltage (1.4V–V

DD

)

Available in 165-Ball FBGA package (15 x 17 x 1.4 mm)

Offered in both in Pb-free and non Pb-free packages

JTAG 1149.1 compatible test access port

Delay Lock Loop (DLL) for accurate data placement

Configurations

CY7C1416AV18 – 4M x 8

CY7C1427AV18 – 4M x 9

CY7C1418AV18 – 2M x 18

CY7C1420AV18 – 1M x 36

Functional Description

The CY7C1416AV18, CY7C1427AV18, CY7C1418AV18, and
CY7C1420AV18 are 1.8V Synchronous Pipelined SRAM
equipped with DDR-II architecture. The DDR-II consists of an
SRAM core with advanced synchronous peripheral circuitry and
a 1-bit burst counter. Addresses for read and write are latched
on alternate rising edges of the input (K) clock. Write data is
registered on the rising edges of both K and K. Read data is
driven on the rising edges of C and C if provided, or on the rising
edge of K and K if C/C are not provided. Each address location
is associated with two 8-bit words in the case of CY7C1416AV18
and two 9-bit words in the case of CY7C1427AV18 that burst
sequentially into or out of the device. The burst counter always
starts with a “0” internally in the case of CY7C1416AV18 and
CY7C1427AV18. On CY7C1418AV18 and CY7C1420AV18, the
burst counter takes in the least significant bit of the external
address and bursts two 18-bit words in the case of
CY7C1418AV18 and two 36-bit words in the case of
CY7C1420AV18 sequentially into or out of the device.

Asynchronous inputs include an output impedance matching
input (ZQ). Synchronous data outputs (Q, sharing the same
physical pins as the data inputs D) are tightly matched to the two
output echo clocks CQ/CQ, eliminating the need for separately
capturing data from each individual DDR SRAM in the system
design. Output data clocks (C/C) enable maximum system
clocking and data synchronization flexibility.

All synchronous inputs pass through input registers controlled by
the K or K input clocks. All data outputs pass through output
registers controlled by the C or C (or K or K in a single clock
domain) input clocks. Writes are conducted with on-chip
synchronous self-timed write circuitry.

Selection Guide

Description

300 MHz

278 MHz

250 MHz

200 MHz

167 MHz

Unit

Maximum Operating Frequency 

300

278

250

200

167

MHz

Maximum Operating Current 

x8

845

795

725

600

500

mA

x9

850

800

725

600

500

x18

900

835

760

620

525

x36

990

910

825

675

570

[+] Feedback 

Summary of Contents for CY7C1416AV18

Page 1: ...es of the input K clock Write data is registered on the rising edges of both K and K Read data is driven on the rising edges of C and C if provided or on the rising edge of K and K if C C are not prov...

Page 2: ...egister Read Add Decode Read Data Reg R W Output Logic Reg Reg Reg 8 16 8 NWS 1 0 VREF Write Add Decode 8 21 C C 8 LD Control R W DOFF 2M x 8 Array 2M x 8 Array 8 DQ 7 0 8 CQ CQ Write Reg Write Reg CL...

Page 3: ...R W Output Logic Reg Reg Reg 18 36 18 BWS 1 0 VREF Write Add Decode 18 21 C C 18 LD Control Burst Logic A0 A 20 1 R W DOFF 1M x 18 Array 1M x 18 Array 20 18 DQ 17 0 18 CQ CQ Write Reg Write Reg CLK A...

Page 4: ...DDQ VSS VSS VSS VDDQ NC NC DQ0 M NC NC NC VSS VSS VSS VSS VSS NC NC NC N NC NC NC VSS A A A VSS NC NC NC P NC NC DQ7 A A C A A NC NC NC R TDO TCK A A A C A A A TMS TDI CY7C1427AV18 4M x 9 1 2 3 4 5 6...

Page 5: ...A A NC NC DQ0 R TDO TCK A A A C A A A TMS TDI CY7C1420AV18 1M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 144M A R W BWS2 K BWS1 LD A NC 72M CQ B NC DQ27 DQ18 A BWS3 K BWS0 A NC NC DQ8 C NC NC DQ28 VSS A A0...

Page 6: ...A0 Input Synchronous Address Inputs These address inputs are multiplexed for both read and write operations Internally the device is organized as 4M x 8 2 arrays each of 2M x 8 for CY7C1416AV18 4M x...

Page 7: ...ed between ZQ and ground Alternatively connect this pin directly to VDDQ which enables the minimum impedance mode This pin cannot be connected directly to GND or left unconnected DOFF Input DLL Turn O...

Page 8: ...the address in a linear fashion On the following K clock rise the data presented to D 17 0 is latched and stored into the 18 bit write data register provided BWS 1 0 are both asserted active On the s...

Page 9: ...to the output clock of the DDR II In the single clock mode CQ is generated with respect to K and CQ is generated with respect to K The timings for the echo clocks is shown in the AC Timing Table DLL T...

Page 10: ...yte D 8 0 is written into the device D 17 9 remains unaltered H L L H During the data portion of a write sequence CY7C1416AV18 only the upper nibble D 7 4 is written into the device D 3 0 remains unal...

Page 11: ...ten into the device D 35 9 remains unaltered L H H H L H During the Data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During th...

Page 12: ...ing edge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP...

Page 13: ...ary scan register After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD...

Page 14: ...ontroller follows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR S...

Page 15: ...HIGH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 In...

Page 16: ...tTDIH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions F...

Page 17: ...nstruction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TD...

Page 18: ...7 8P 35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P...

Page 19: ...ock K K for 1024 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions at frequencies...

Page 20: ...V VOH Output HIGH Voltage Note 16 VDDQ 2 0 12 VDDQ 2 0 12 V VOL Output LOW Voltage Note 17 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW O...

Page 21: ...atic 300MHz x8 345 mA x9 345 x18 360 x36 400 278MHz x8 325 mA x9 330 x18 345 x36 370 250MHz x8 320 mA x9 320 x18 330 x36 350 200MHz x8 300 mA x9 300 x18 300 x36 315 167MHz x8 285 mA x9 285 x18 290 x36...

Page 22: ...e Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 17 2 C W JC Thermal Resistance Junction to Case 3 2 C W...

Page 23: ...up to K Clock Rise LD R W 0 4 0 4 0 5 0 6 0 7 ns tSCDDR tIVKH Double Data Rate Control Setup to Clock K K Rise BWS0 BWS1 BWS2 BWS3 0 3 0 3 0 35 0 4 0 5 ns tSD 23 tDVKH D X 0 Setup to Clock K K Rise 0...

Page 24: ...CHQZ Clock C C Rise to High Z Active to High Z 24 25 0 45 0 45 0 45 0 45 0 50 ns tCLZ tCHQX1 Clock C C Rise to Low Z 24 25 0 4 5 0 4 5 0 4 5 0 4 5 0 5 0 ns DLL Timing tKC Var tKC Var Clock Phase Jitte...

Page 25: ...tKH tKHKH tKL tCYC A0 D20 D21 D30 D31 Q00 Q11 Q01 Q10 A1 A2 A3 A4 Q41 tCCQO tCQOH tCCQO tCQOH tKL tCYC K K LD R W A DQ C C CQ CQ SA tKH tKHKH tCQD tCQDOH Notes 26 Q00 refers to output from address A0...

Page 26: ...ll Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1427AV18 300BZI CY7C1418AV18 300BZI CY7C1420AV18 300BZI CY7C1416AV18 300BZXI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm...

Page 27: ...18 250BZXI 200 CY7C1416AV18 200BZC 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Commercial CY7C1427AV18 200BZC CY7C1418AV18 200BZC CY7C1420AV18 200BZC CY7C1416AV18 200BZXC 51 85195 16...

Page 28: ...AV18 167BZXC CY7C1416AV18 167BZI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1427AV18 167BZI CY7C1418AV18 167BZI CY7C1420AV18 167BZI CY7C1416AV18 167BZXI 51 85195 165...

Page 29: ...8AV18 CY7C1420AV18 Document Number 38 05616 Rev F Page 29 of 31 Package Diagram Figure 6 165 ball FBGA 15 x 17 x 1 4 mm 51 85195 0 2 2 8 8 8 3 4 0 0 2 2 4 0 6 7 44 6 7 0 2 0 2 3 2 0 490 3 2 3 3 4 3 0...

Page 30: ...h First Street to 198 Champion Court Added Power up sequence and Wave form on page 19 Added Footnotes 13 14 15 on page 19 Replaced Three state with Tri state Changed the description of IX from Input L...

Page 31: ...ed above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO T...

Reviews: