background image

CY7C1416AV18, CY7C1427AV18
CY7C1418AV18, CY7C1420AV18

Document Number: 38-05616 Rev. *F

Page 12 of 31

IEEE 1149.1 Serial Boundary Scan (JTAG)

These SRAMs incorporate a serial boundary scan Test Access
Port (TAP) in the FBGA package. This part is fully compliant with
IEEE Standard #1149.1-1900. The TAP operates using JEDEC
standard 1.8V IO logic levels.

Disabling the JTAG Feature

It is possible to operate the SRAM without using the JTAG
feature. To disable the TAP controller, TCK must be tied LOW
(V

SS

) to prevent clocking of the device. TDI and TMS are inter-

nally pulled up and may be unconnected. They may alternatively
be connected to V

DD

 through a pull up resistor. TDO must be left

unconnected. Upon power up, the device comes up in a reset
state, which does not interfere with the operation of the device.

Test Access Port—Test Clock

The test clock is used only with the TAP controller. All inputs are
captured on the rising edge of TCK. All outputs are driven from
the falling edge of TCK.

Test Mode Select (TMS)

The TMS input is used to give commands to the TAP controller
and is sampled on the rising edge of TCK. This pin may be left
unconnected if the TAP is not used. The pin is pulled up inter-
nally, resulting in a logic HIGH level.

Test Data-In (TDI)

The TDI pin is used to serially input information into the registers
and can be connected to the input of any of the registers. The
register between TDI and TDO is chosen by the instruction that
is loaded into the TAP instruction register. For information on
loading the instruction register, see the 

TAP Controller State

Diagram

 on page 14. TDI is internally pulled up and can be

unconnected if the TAP is unused in an application. TDI is
connected to the most significant bit (MSB) on any register.

Test Data-Out (TDO)

The TDO output pin is used to serially clock data out from the
registers. The output is active, depending upon the current state
of the TAP state machine (see 

Instruction Codes

 on page 17).

The output changes on the falling edge of TCK. TDO is
connected to the least significant bit (LSB) of any register.

Performing a TAP Reset

A Reset is performed by forcing TMS HIGH (V

DD

) for five rising

edges of TCK. This Reset does not affect the operation of the
SRAM and can be performed while the SRAM is operating. At
power up, the TAP is reset internally to ensure that TDO comes
up in a high-Z state.

TAP Registers

Registers are connected between the TDI and TDO pins to scan
the data in and out of the SRAM test circuitry. Only one register
can be selected at a time through the instruction registers. Data
is serially loaded into the TDI pin on the rising edge of TCK. Data
is output on the TDO pin on the falling edge of TCK.

Instruction Register

Three-bit instructions can be serially loaded into the instruction
register. This register is loaded when it is placed between the TDI
and TDO pins, as shown in 

TAP Controller Block Diagram

 on

page 15. Upon power up, the instruction register is loaded with
the IDCODE instruction. It is also loaded with the IDCODE
instruction if the controller is placed in a reset state, as described
in the previous section.

When the TAP controller is in the Capture-IR state, the two least
significant bits are loaded with a binary “01” pattern to allow for
fault isolation of the board level serial test path.

Bypass Register

To save time when serially shifting data through registers, it is
sometimes advantageous to skip certain chips. The bypass
register is a single-bit register that can be placed between TDI
and TDO pins. This enables shifting of data through the SRAM
with minimal delay. The bypass register is set LOW (V

SS

) when

the BYPASS instruction is executed.

Boundary Scan Register

The boundary scan register is connected to all of the input and
output pins on the SRAM. Several No Connect (NC) pins are also
included in the scan register to reserve pins for higher density
devices.

The boundary scan register is loaded with the contents of the
RAM input and output ring when the TAP controller is in the
Capture-DR state and is then placed between the TDI and TDO
pins when the controller is moved to the Shift-DR state. The
EXTEST, SAMPLE/PRELOAD, and SAMPLE Z instructions can
be used to capture the contents of the input and output ring.

The 

Boundary Scan Order

 on page 18 shows the order in which

the bits are connected. Each bit corresponds to one of the bumps
on the SRAM package. The MSB of the register is connected to
TDI, and the LSB is connected to TDO.

Identification (ID) Register

The ID register is loaded with a vendor-specific, 32-bit code
during the Capture-DR state when the IDCODE command is
loaded in the instruction register. The IDCODE is hardwired into
the SRAM and can be shifted out when the TAP controller is in
the Shift-DR state. The ID register has a vendor code and other
information described in 

Identification Register Definitions

 on

page 17.

TAP Instruction Set

Eight different instructions are possible with the three-bit
instruction register. All combinations are listed in 

Instruction

Codes

 on page 17. Three of these instructions are listed as

RESERVED and must not be used. The other five instructions
are described in this section in detail.

Instructions are loaded into the TAP controller during the Shift-IR
state when the instruction register is placed between TDI and
TDO. During this state, instructions are shifted through the
instruction register through the TDI and TDO pins. To execute
the instruction after it is shifted in, the TAP controller must be
moved into the Update-IR state.

[+] Feedback 

Summary of Contents for CY7C1416AV18

Page 1: ...es of the input K clock Write data is registered on the rising edges of both K and K Read data is driven on the rising edges of C and C if provided or on the rising edge of K and K if C C are not prov...

Page 2: ...egister Read Add Decode Read Data Reg R W Output Logic Reg Reg Reg 8 16 8 NWS 1 0 VREF Write Add Decode 8 21 C C 8 LD Control R W DOFF 2M x 8 Array 2M x 8 Array 8 DQ 7 0 8 CQ CQ Write Reg Write Reg CL...

Page 3: ...R W Output Logic Reg Reg Reg 18 36 18 BWS 1 0 VREF Write Add Decode 18 21 C C 18 LD Control Burst Logic A0 A 20 1 R W DOFF 1M x 18 Array 1M x 18 Array 20 18 DQ 17 0 18 CQ CQ Write Reg Write Reg CLK A...

Page 4: ...DDQ VSS VSS VSS VDDQ NC NC DQ0 M NC NC NC VSS VSS VSS VSS VSS NC NC NC N NC NC NC VSS A A A VSS NC NC NC P NC NC DQ7 A A C A A NC NC NC R TDO TCK A A A C A A A TMS TDI CY7C1427AV18 4M x 9 1 2 3 4 5 6...

Page 5: ...A A NC NC DQ0 R TDO TCK A A A C A A A TMS TDI CY7C1420AV18 1M x 36 1 2 3 4 5 6 7 8 9 10 11 A CQ NC 144M A R W BWS2 K BWS1 LD A NC 72M CQ B NC DQ27 DQ18 A BWS3 K BWS0 A NC NC DQ8 C NC NC DQ28 VSS A A0...

Page 6: ...A0 Input Synchronous Address Inputs These address inputs are multiplexed for both read and write operations Internally the device is organized as 4M x 8 2 arrays each of 2M x 8 for CY7C1416AV18 4M x...

Page 7: ...ed between ZQ and ground Alternatively connect this pin directly to VDDQ which enables the minimum impedance mode This pin cannot be connected directly to GND or left unconnected DOFF Input DLL Turn O...

Page 8: ...the address in a linear fashion On the following K clock rise the data presented to D 17 0 is latched and stored into the 18 bit write data register provided BWS 1 0 are both asserted active On the s...

Page 9: ...to the output clock of the DDR II In the single clock mode CQ is generated with respect to K and CQ is generated with respect to K The timings for the echo clocks is shown in the AC Timing Table DLL T...

Page 10: ...yte D 8 0 is written into the device D 17 9 remains unaltered H L L H During the data portion of a write sequence CY7C1416AV18 only the upper nibble D 7 4 is written into the device D 3 0 remains unal...

Page 11: ...ten into the device D 35 9 remains unaltered L H H H L H During the Data portion of a write sequence only the lower byte D 8 0 is written into the device D 35 9 remains unaltered H L H H L H During th...

Page 12: ...ing edge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TAP...

Page 13: ...ary scan register After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD...

Page 14: ...ontroller follows 9 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR 1 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 SELECT IR S...

Page 15: ...HIGH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 In...

Page 16: ...tTDIH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 ns TAP Timing and Test Conditions F...

Page 17: ...nstruction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TD...

Page 18: ...7 8P 35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P...

Page 19: ...ock K K for 1024 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions at frequencies...

Page 20: ...V VOH Output HIGH Voltage Note 16 VDDQ 2 0 12 VDDQ 2 0 12 V VOL Output LOW Voltage Note 17 VDDQ 2 0 12 VDDQ 2 0 12 V VOH LOW Output HIGH Voltage IOH 0 1 mA Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW O...

Page 21: ...atic 300MHz x8 345 mA x9 345 x18 360 x36 400 278MHz x8 325 mA x9 330 x18 345 x36 370 250MHz x8 320 mA x9 320 x18 330 x36 350 200MHz x8 300 mA x9 300 x18 300 x36 315 167MHz x8 285 mA x9 285 x18 290 x36...

Page 22: ...e Junction to Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance in accordance with EIA JESD51 17 2 C W JC Thermal Resistance Junction to Case 3 2 C W...

Page 23: ...up to K Clock Rise LD R W 0 4 0 4 0 5 0 6 0 7 ns tSCDDR tIVKH Double Data Rate Control Setup to Clock K K Rise BWS0 BWS1 BWS2 BWS3 0 3 0 3 0 35 0 4 0 5 ns tSD 23 tDVKH D X 0 Setup to Clock K K Rise 0...

Page 24: ...CHQZ Clock C C Rise to High Z Active to High Z 24 25 0 45 0 45 0 45 0 45 0 50 ns tCLZ tCHQX1 Clock C C Rise to Low Z 24 25 0 4 5 0 4 5 0 4 5 0 4 5 0 5 0 ns DLL Timing tKC Var tKC Var Clock Phase Jitte...

Page 25: ...tKH tKHKH tKL tCYC A0 D20 D21 D30 D31 Q00 Q11 Q01 Q10 A1 A2 A3 A4 Q41 tCCQO tCQOH tCCQO tCQOH tKL tCYC K K LD R W A DQ C C CQ CQ SA tKH tKHKH tCQD tCQDOH Notes 26 Q00 refers to output from address A0...

Page 26: ...ll Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1427AV18 300BZI CY7C1418AV18 300BZI CY7C1420AV18 300BZI CY7C1416AV18 300BZXI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm...

Page 27: ...18 250BZXI 200 CY7C1416AV18 200BZC 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Commercial CY7C1427AV18 200BZC CY7C1418AV18 200BZC CY7C1420AV18 200BZC CY7C1416AV18 200BZXC 51 85195 16...

Page 28: ...AV18 167BZXC CY7C1416AV18 167BZI 51 85195 165 Ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1427AV18 167BZI CY7C1418AV18 167BZI CY7C1420AV18 167BZI CY7C1416AV18 167BZXI 51 85195 165...

Page 29: ...8AV18 CY7C1420AV18 Document Number 38 05616 Rev F Page 29 of 31 Package Diagram Figure 6 165 ball FBGA 15 x 17 x 1 4 mm 51 85195 0 2 2 8 8 8 3 4 0 0 2 2 4 0 6 7 44 6 7 0 2 0 2 3 2 0 490 3 2 3 3 4 3 0...

Page 30: ...h First Street to 198 Champion Court Added Power up sequence and Wave form on page 19 Added Footnotes 13 14 15 on page 19 Replaced Three state with Tri state Changed the description of IX from Input L...

Page 31: ...ed above is prohibited without the express written permission of Cypress Disclaimer CYPRESS MAKES NO WARRANTY OF ANY KIND EXPRESS OR IMPLIED WITH REGARD TO THIS MATERIAL INCLUDING BUT NOT LIMITED TO T...

Reviews: