background image

PRELIMINARY

2-Mbit (64K x 32) Flow-Through SRAM

with NoBL™ Architecture

CY7C1333H

Cypress Semiconductor Corporation

3901 North First Street

San Jose

,

CA 95134

408-943-2600

Document #: 001-00209 Rev. **

          Revised April 11, 2005

Features

• Can support up to 133-MHz bus operations with zero 

wait states. 

— Data is transferred on every clock.

• Pin compatible and functionally equivalent to ZBT™ 

devices 

• Internally self-timed output buffer control to eliminate 

the need to use OE

• Registered inputs for flow-through operation

• Byte Write capability

• 64K x 32 common I/O architecture 

• Single 3.3V power supply

• Fast clock-to-output times

— 6.5 ns (for 133-MHz device)

— 8.0 ns (for 100-MHz device)

• Clock Enable (CEN) pin to suspend operation

• Synchronous self-timed writes Offered in Lead-Free

• Asynchronous Output Enable

• Offered in Lead-Free JEDEC-standard 100 TQFP 

package 

• Burst Capability—linear or interleaved burst order

• Low standby power

Functional Description

[1]

The CY7C1333H is a 3.3V, 64K x 32 Synchronous
Flow-through Burst SRAM designed specifically to support
unlimited true back-to-back Read/Write operations without the
insertion of wait states. The CY7C1333H is equipped with the
advanced No Bus Latency™ (NoBL™) logic required to
enable consecutive Read/Write operations with data being
transferred on every clock cycle. This feature dramatically
improves the throughput of data through the SRAM, especially
in systems that require frequent Write-Read transitions.

All synchronous inputs pass through input registers controlled
by the rising edge of the clock. The clock input is qualified by
the Clock Enable (CEN) signal, which when deasserted
suspends operation and extends the previous clock cycle.
Maximum access delay from the clock rise is 6.5 ns (133-MHz
device).

Write operations are controlled by the two Byte Write Select
(BW

[A:D]

) and a Write Enable (WE) input. All writes are

conducted with on-chip synchronous self-timed write circuitry.

Three synchronous Chip Enables (CE

1

, CE

2

, CE

3

) and an

asynchronous Output Enable (OE) provide for easy bank
selection and output three-state control. In order to avoid bus
contention, the output drivers are synchronously three-stated
during the data portion of a write sequence.

Note: 

1. For best-practices recommendations, please refer to the Cypress application note 

System Design Guidelines 

on www.cypress.com.

C

MODE

BW

A

BW

B

WE

CE1
CE2
CE3

OE

READ LOGIC

DQs

MEMORY

ARRAY

E

INPUT

REGISTER

BW

C

BW

D

ADDRESS
REGISTER

WRITE REGISTRY

AND DATA COHERENCY

CONTROL LOGIC

BURST

LOGIC

A0'

A1'

D1
D0

Q1
Q0

A0

A1

ADV/LD

CE

ADV/LD

C

CLK

CEN

WRITE

DRIVERS

D
A

T

A

S
T
E
E

R

I

N
G

S
E

N

S
E

A

M

P
S

WRITE ADDRESS

REGISTER

A0, A1, A

O
U

T
P

U

T

B

U

F
F
E

R

S

E

ZZ

SLEEP
Control

Logic Block Diagram

[+] Feedback 

Summary of Contents for CY7C1333H

Page 1: ...ith data being transferred on every clock cycle This feature dramatically improves the throughput of data through the SRAM especially in systems that require frequent Write Read transitions All synchr...

Page 2: ...B DQB DQB DQB VSS VDDQ DQB DQB VSS NC VDD DQA DQA VDDQ VSS DQA DQA DQA DQA VSS VDDQ DQA DQA NC NC DQC DQC VDDQ VSS DQC DQC DQC DQC VSS VDDQ DQC DQC NC VDD NC VSS DQD DQD VDDQ VSS DQD DQD DQD DQD VSS V...

Page 3: ...e allowed to behave as outputs When deasserted HIGH I O pins are three stated and act as input data pins OE is masked during the data portion of a Write sequence during the first clock when emerging f...

Page 4: ...n incremented sufficiently A HIGH input on ADV LD will increment the internal burst counter regardless of the state of chip enable inputs or WE WE is latched at the beginning of a burst cycle Therefor...

Page 5: ...t X X X L H X X L L L H Data Out Q NOP DUMMY READ Begin Burst External L H L L L H X H L L H Three State DUMMY READ Continue Burst Next X X X L H X X H L L H Three State WRITE Cycle Begin Burst Extern...

Page 6: ...12 Truth Table for Read Write 2 3 Function WE BWA BWB BWC BWD Read H X X X X Write No Bytes Written L H H H H Write Byte A DQA L L H H H Write Byte B DQB L H L H H Write Byte C DQC L H H L H Write By...

Page 7: ...Current GND VI VDD Output Disabled 5 5 A IDD VDD Operating Supply Current VDD Max IOUT 0 mA f fMAX 1 tCYC 7 5 ns cycle 133 MHz 225 mA 10 ns cycle 100 MHz 205 mA ISB1 Automatic CE Power down Current T...

Page 8: ...2 0 ns tCENS CEN Set up before CLK Rise 1 5 2 0 ns tDS Data Input Set up before CLK Rise 1 5 2 0 ns tCES Chip Enable Set Up before CLK Rise 1 5 2 0 ns Notes 12 Timing reference level is 1 5V when VDD...

Page 9: ...n CE is HIGH CE1 is HIGH or CE2 is LOW or CE3 is HIGH 20 Order of the Burst sequence is determined by the status of the MODE 0 Linear 1 Interleaved Burst operations are optional Switching Characterist...

Page 10: ...133AXC A101 Lead Free 100 lead Thin Quad Flat Pack 14 x 20 x 1 4 mm Commercial CY7C1333H 133AXI A101 Lead Free 100 lead Thin Quad Flat Pack 14 x 20 x 1 4 mm Industrial 100 CY7C1333H 100AXC A101 Lead F...

Page 11: ...s written agreement with Cypress Furthermore Cypress does not authorize its products for use as critical components in life support systems where a malfunction or failure may reasonably be expected to...

Page 12: ...Page 12 of 12 Document History Page Document Title CY7C1333H 2 Mbit 64K x 32 Flow Through SRAM with NoBL Architecture Document Number 001 00209 REV ECN NO Issue Date Orig of Change Description of Chan...

Reviews: