background image

CY7C1241V18, CY7C1256V18
CY7C1243V18, CY7C1245V18

 36-Mbit QDR™-II+ SRAM 4-Word Burst

Architecture (2.0 Cycle Read Latency)

Cypress Semiconductor Corporation

198 Champion Court

San Jose

,

CA 95134-1709

408-943-2600

Document Number: 001-06365 Rev. *D

 Revised March 12, 2008

Features

Separate independent read and write data ports

Supports concurrent transactions

300 MHz to 375 MHz clock for high bandwidth

4-Word Burst for reducing address bus frequency 

Double Data Rate (DDR) interfaces on both read and write ports 
(data transferred at 750 MHz) at 375 MHz 

Read latency of 2.0 clock cycles 

Two input clocks (K and K) for precise DDR timing

SRAM uses rising edges only

Echo clocks (CQ and CQ) simplify data capture in high-speed 
systems

Single multiplexed address input bus latches address inputs 
for both read and write ports

Separate Port Selects for depth expansion

Data valid pin (QVLD) to indicate valid data on the output

Synchronous internally self-timed writes

Available in x8, x9, x18, and x36 configurations

Full data coherency providing most current data

Core V

DD

 = 1.8V ± 0.1V; IO V

DDQ

 = 1.4V to V

DD

[1]

HSTL inputs and variable drive HSTL output buffers

Available in 165-ball FBGA package (15 x 17 x 1.4 mm)

Offered in both Pb-free and non Pb-free packages

JTAG 1149.1 compatible test access port

Delay Lock Loop (DLL) for accurate data placement

Configurations

With Read Cycle Latency of 2.0 cycles:

CY7C1241V18 – 4M x 8
CY7C1256V18 – 4M x 9
CY7C1243V18 – 2M x 18
CY7C1245V18 – 1M x 36

Functional Description

The CY7C1241V18, CY7C1256V18, CY7C1243V18, and
CY7C1245V18 are 1.8V Synchronous Pipelined SRAMs,
equipped with Quad Data Rate-II+ (QDR-II+) architecture.
QDR-II+ architecture consists of two separate ports to access
the memory array. The read port has dedicated data outputs to
support read operations and the write port has dedicated data
inputs to support write operations. QDR-II+ architecture has
separate data inputs and data outputs to completely eliminate
the need to “turn around” the data bus required with common IO
devices. Each port can be accessed through a common address
bus. Read and write addresses are latched on alternate rising
edges of the input (K) clock. Accesses to the QDR-II+ read and
write ports are completely independent of one another. To
maximize data throughput, both read and write ports are
equipped with Double Data Rate (DDR) interfaces. Each
address location is associated with four 8-bit words
(CY7C1241V18), 9-bit words (CY7C1256V18), 18-bit words
(CY7C1243V18), or 36-bit words (CY7C1245V18), that burst
sequentially into or out of the device. Because data can be trans-
ferred into and out of the device on every rising edge of both input
clocks (K and K), memory bandwidth is maximized while simpli-
fying system design by eliminating bus “turn-arounds”.

Depth expansion is accomplished with Port Selects for each port.
Port selects enable each port to operate independently.

All synchronous inputs pass through input registers controlled by
the K or K input clocks. All data outputs pass through output
registers controlled by the K or K input clocks. Writes are
conducted with on-chip synchronous self-timed write circuitry.

Selection Guide

Description

375 MHz

333 MHz

300 MHz

Unit

Maximum Operating Frequency 

375

333

300

MHz

Maximum Operating Current 

1240

1120

1040

mA

Note

1. The QDR consortium specification for V

DDQ

 is 1.5V + 0.1V. The Cypress QDR devices exceed the QDR consortium specification and are capable of supporting 

V

DDQ

 = 1.4V to V

DD

.

[+] Feedback 

[+] Feedback 

Summary of Contents for CY7C1241V18

Page 1: ...e QDR II architecture consists of two separate ports to access the memory array The read port has dedicated data outputs to support read operations and the write port has dedicated data inputs to supp...

Page 2: ...ister Reg Reg Reg 16 20 8 32 8 NWS 1 0 VREF Write Add Decode Write Reg 16 A 19 0 20 1M x 8 Array 1M x 8 Array 1M x 8 Array Write Reg Write Reg Write Reg 8 CQ CQ DOFF QVLD 1M x 9 Array CLK A 19 0 Gen K...

Page 3: ...Reg 36 19 18 72 18 BWS 1 0 VREF Write Add Decode Write Reg 36 A 18 0 19 512K x 18 Array 512K x 18 Array 512K x 18 Array Write Reg Write Reg Write Reg 18 CQ CQ DOFF QVLD 256K x 36 Array CLK A 17 0 Gen...

Page 4: ...C VSS NC Q2 NC NC NC VREF NC NC VDDQ NC VDDQ NC NC VDDQ VDDQ VDDQ D1 VDDQ NC Q1 NC VDDQ VDDQ NC VSS NC D0 NC TDI TMS VSS A NC A NC D2 NC ZQ NC Q0 NC NC NC NC A NC 144M CY7C1256V18 4M x 9 2 3 4 5 6 7 1...

Page 5: ...D5 NC NC VREF NC Q3 VDDQ NC VDDQ NC Q5 VDDQ VDDQ VDDQ D4 VDDQ NC Q4 NC VDDQ VDDQ NC VSS NC D2 NC TDI TMS VSS A NC A D7 D6 NC ZQ D3 Q2 D1 Q1 D0 NC A NC CY7C1245V18 1M x 36 2 3 4 5 6 7 1 A B C D E F G H...

Page 6: ...ss Inputs Sampled on the rising edge of the K clock during active read and write opera tions These address inputs are multiplexed for both read and write operations Internally the device is organized...

Page 7: ...is pin to ground turns off the DLL inside the device The timing in the DLL turned off operation is different from that listed in this data sheet For normal operation this pin can be connected to a pul...

Page 8: ...ing edge of the Positive Input Clock K This enables a seamless transition between devices without the insertion of wait states in a depth expanded memory Write Operations Write operations are initiate...

Page 9: ...generated by the QDR II CQ is referenced with respect to K and CQ is refer enced with respect to K These are free running clocks and are synchronized to the input clock of the QDR II The timing for t...

Page 10: ...D A K SRAM 4 RQ 250ohms ZQ CQ CQ Q K RPS WPS BWS D A K SRAM 1 RQ 250ohms ZQ CQ CQ Q K RPS WPS BWS RPS WPS BWS R 50ohms Vt V 2 DDQ R Notes 2 X Don t Care H Logic HIGH L Logic LOW represents rising edg...

Page 11: ...7C1241V18 only the upper nibble D 7 4 is written into the device D 3 0 remains unaltered CY7C1243V18 only the upper byte D 17 9 is written into the device D 8 0 remains unaltered H L L H During the da...

Page 12: ...y the byte D 17 9 is written into the device D 8 0 and D 35 18 remain unaltered H L H H L H During the data portion of a write sequence only the byte D 17 9 is written into the device D 8 0 and D 35 1...

Page 13: ...lling edge of TCK Instruction Register Three bit instructions can be serially loaded into the instruction register This register is loaded when it is placed between the TDI and TDO pins as shown in TA...

Page 14: ...egister After the data is captured it is possible to shift out the data by putting the TAP into the Shift DR state This places the boundary scan register between the TDI and TDO pins PRELOAD places an...

Page 15: ...3V18 and CY7C1245V18 follows 11 TEST LOGIC RESET TEST LOGIC IDLE SELECT DR SCAN CAPTURE DR SHIFT DR EXIT1 DR PAUSE DR EXIT2 DR UPDATE DR SELECT IR SCAN CAPTURE IR SHIFT IR EXIT1 IR PAUSE IR EXIT2 IR U...

Page 16: ...GH Voltage 0 65VDD VDD 0 3 V VIL Input LOW Voltage 0 3 0 35VDD V IX Input and Output Load Current GND VI VDD 5 5 A 0 0 1 2 29 30 31 Boundary Scan Register Identification Register 0 1 2 108 0 1 2 Instr...

Page 17: ...MSH TMS Hold after TCK Clock Rise 5 ns tTDIH TDI Hold after Clock Rise 5 ns tCH Capture Hold after Clock Rise 5 ns Output Times tTDOV TCK Clock LOW to TDO Valid 10 ns tTDOX TCK Clock LOW to TDO Invali...

Page 18: ...struction Codes Instruction Code Description EXTEST 000 Captures the input output ring contents IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO Thi...

Page 19: ...35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P 15 9M...

Page 20: ...e power and clock K K for 2048 cycles to lock the DLL DLL Constraints DLL uses K clock as its synchronizing input The input must have low phase jitter which is specified as tKC Var The DLL functions a...

Page 21: ...A Nominal Impedance VDDQ 0 2 VDDQ V VOL LOW Output LOW Voltage IOL 0 1 mA Nominal Impedance VSS 0 2 V VIH Input HIGH Voltage VREF 0 1 VDDQ 0 15 V VIL Input LOW Voltage 0 15 VREF 0 1 V IX Input Leakage...

Page 22: ...Ambient Test conditions follow standard test methods and procedures for measuring thermal impedance per EIA JESD51 16 25 C W JC Thermal Resistance Junction to Case 2 91 C W AC Test Loads and Waveforms...

Page 23: ...2 0 2 ns tCQDOH tCQHQX Echo Clock High to Data Invalid 0 2 0 2 0 2 ns tCQH tCQHCQL Output Clock CQ CQ HIGH 25 0 88 1 03 1 15 ns tCQHCQH tCQHCQH CQ Clock Rise to CQ Clock Rise 25 rising edge to rising...

Page 24: ...A WPS RPS K K DON T CARE UNDEFINED CQ CQ tCQOH CCQO t tCQOH CCQO t tQVLD QVLD tQVLD Read Latency 2 0 Cycles CLZ t t CO tDOH tCQDOH CQD t tCHZ Q00 Q01 Q20 Q02 Q21 Q03 Q22 Q23 tCQH tCQHCQH Q Notes 30 Q...

Page 25: ...all Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1256V18 375BZI CY7C1243V18 375BZI CY7C1245V18 375BZI CY7C1241V18 375BZXI 51 85195 165 ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Pb...

Page 26: ...0BZXC CY7C1241V18 300BZI 51 85195 165 ball Fine Pitch Ball Grid Array 15 x 17 x 1 4 mm Industrial CY7C1256V18 300BZI CY7C1243V18 300BZI CY7C1245V18 300BZI CY7C1241V18 300BZXI 51 85195 165 ball Fine Pi...

Page 27: ...Y7C1245V18 Document Number 001 06365 Rev D Page 27 of 28 Package Diagram Figure 5 165 ball FBGA 15 x 17 x 1 40 mm 51 85195 0 2 2 8 8 8 3 4 0 0 2 2 4 0 6 7 44 6 7 0 2 0 2 3 2 0 490 3 2 3 3 4 3 0 7 4 G...

Page 28: ...LIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE Cypress reserves the right to make changes without further notice to the materials described herein Cypress does not assume any...

Reviews: