background image

4

If the control is connected to a ComfortID™ system, the

room terminals are equipped with microprocessor controls that

give commands to the base module. If linkage is active, the

control module will replace local 

Comfort

Link™ set points

and occupancy data with linkage supplied data.

If Temperature Compensated Start is active, then the unit

control will start the unit in advance of the occupied time to

pre-cool or heat the space. If the unit is configured to use a

pre-purge cycle, then the control will start the unit in vent mode

based on a pre-start time interval. If an IAQ (indoor air quality)

sensor is being used and the low IAQ control point is satisfied

then the mode will be terminated. The mode terminates when

the occupied period starts.

If Cooling mode is required, then the controlling set point

will be the leaving evaporator air temperature set point. If an

economizer is present and the changeover control allows the

economizer to be used, then the control will first attempt to

control the leaving evaporator air temperature using free

cooling. If this cannot satisfy the load then additional

compressor stages will be turned on to maintain the leaving air

temperature. When both compressors and the economizer are

being used, the unit control will use the economizer dampers to

maintain better control of the leaving air and to prevent high

compressor cycling. If the economizer cannot be used, then it

will be set to the minimum vent position.

If the unit is equipped with an optional hot gas bypass valve,

then the unit control will use hot gas as an additional stage of

capacity. When the first stage of cooling is required, the unit

control will turn on the circuit A compressor and the hot gas

bypass valve. When additional cooling is called for, the unit

control will turn off the hot gas bypass valve. The valve will

also be used for additional freeze protection of the coils when

low evaporator refrigerant temperatures are detected using the

suction pressure tranducers.

The unit control will also monitor the supply duct pressure

and send a 4 to 20 mA signal to the factory-supplied inverter to

control the speed of the fan to maintain the user-configured

supply duct status pressure. If the 

Comfort

Link control is on

the CCN (Carrier Comfort Network

®

) system or a building

linkage system, then the control also supports static pressure

reset based on the needs of the zones.

If the unit has been enabled for occupied heat and if the

space temperature sensor (SPT), return air temperature sensor

(RAT), or CCN (in a building linkage system) demand requires

that the unit be in Heating mode, then the unit control will

energize the electric or gas heat to warm the space. In this

mode, the unit control will energize the heat interlock relay

(HIR). Note that for the linkage systems the interlock relay

connection is not required. Once the mode is enabled, the unit

control will use up to 2 stages of heat to control to the return air

temperature set point. Heating will continue until the return

temperature set point is satisfied. If the unit is configured for

morning warm-up and the heating demand is below the set

point during the first 10 minutes of operation, then the unit

control will energize full heating capacity until the return air

temperature set point is satisfied.

Gas Heat Unit Operation — 

The gas heat units incor-

porate 2 (3 on size 060) separate systems to provide gas heat.

Each system incorporates its own induced-draft motor,

Integrated Gas Control (IGC) board, 2-stage gas valve,

manifold, and safeties. The systems are operated in parallel.

For example, when there is a call for first stage heat, both

induced-draft motors operate, both gas valves are energized,

and both IGC boards initiate spark. All of the gas heating

control is performed through the IGC boards (located in the

heating section).

The MBB (Main Base Board) module board initiates and

terminates heating operation and monitors the status of the

requirements for indoor fan operation. The fan will be

controlled directly by the MBB board.

When the thermostat or room sensor calls for heating, the

MBB board will close heating relays and send power to W on

each of the IGC boards. An LED on the IGC board will be on

during normal operation. A check is made to ensure that the

rollout switches and limit switches are closed and the induced-

draft motors are not running. After the induced-draft motors are

energized and speed is proven with the Hall Effect sensor on

the motor, the ignition activation period begins. The burners

will ignite within 5 seconds. When ignition occurs the IGC

board will continue to monitor the condition of the rollout and

limit switches, the Hall Effect sensor and the flame sensor.

If the unit is controlled through a room thermostat set for

fan auto., 45 seconds after ignition occurs the indoor-fan motor

will be energized and the outdoor-air dampers will open to their

minimum position. If the overtemperature limit opens prior to

the start of the indoor-fan blower, on the next attempt the

45-second delay will be shortened to 5 seconds less than the

time from initiation of heat to when the limit tripped. Gas will

not be interrupted to the burners and heating will continue.

Once modified, the fan on delay will not change back to

45 seconds unless power is reset to the control.

If the unit is controlled through a room sensor, the indoor

fan will operate in the occupied mode and the outdoor-air

dampers will be at the minimum position. In the unoccupied

mode, the indoor fan will be energized through the IGC board

with a 45-second delay and the outside-air dampers will move

to the minimum unoccupied set point.

When additional heat is required, the second stage MBB

output relay closes and initiates power to the second stage of all

main gas valves in all sections. When the demand is satisfied,

MBB heat output relays will open and the gas valves close

interrupting the flow of gas to the main burners.

If the call for stage 1 heat lasts less than 1 minute, the

heating cycle will not terminate until 1 minute after W1

became active. If the unit is configured for intermittent fan then

the indoor-fan motor will continue to operate for an additional

45 seconds then stop and the outdoor-air dampers will close. If

the over temperature limit opens after the indoor motor is

stopped within 10 minutes of W1 becoming inactive, on the

next cycle the time will be extended by 15 seconds. The

maximum delay is 3 minutes. Once modified, the fan off delay

will not change back to 45 seconds unless power is reset to the

control.

Indoor Air Quality — 

The indoor air quality (IAQ) func-

tion provides a demand-based control for ventilation air quanti-

ty, by providing a modulating outside air damper position that

is proportional to space CO

2

 level. The ventilation damper po-

sition is varied between a minimum ventilation level (based on

internal sources of contaminants and CO

2

 levels other than the

effect of people) and the maximum design ventilation level

(determined at maximum populated status in the building).

During a less-than-fully populated space period, the CO

2

 level

will be lower than maximum design ventilation level at full-

load design condition, thus less ventilation air will be required.

Reduced quantities of ventilation air will result in reduced op-

erating costs. Space CO

2

 level is monitored and compared to

user-configured set points. An accessory CO

2

 sensor for space

(or return duct mounting) is required. The IAQ routine can be

enhanced by also installing a sensor for outdoor air quality

(OAQ).

Summary of Contents for WEATHERMAKER 48A4

Page 1: ...79 9 48A2 A3 A4 A5060 48EJ503679 10 Gas Heat Control Circuit Staged Gas Heat 48A2 A3 A4 A5020 050 48EJ502488 11 48A2 A3 A4 A5060 48EJ503680 12 Electric Heat Control Circuit 50A2 A3 A4 A5020 050 48EJ503080 13 50A2 A3 A4 A5060 48EJ503655 14 ACCESSORY UNIT FIG NO Motormaster V Low Ambient Controller 48 50A2 A3 A4 A5020 035 15 48 50A2 A3 A4 A5040 050 AND 060 RTPF Units 16 48 50A2 A3 A4 A5060 MCHX Unit...

Page 2: ...riable Frequency Drive Terminal Block Terminal Unmarked Terminal Marked Splice Factory Wiring Field Wiring To indicate common potential only not to represent wiring To indicate FIOP or Accessory Common PLUG LOCATION REFERENCE NOTES 1 Factory wiring is in accordance with the national electrical codes Any field modifications or additions must be in compliance with all applicable codes 2 Use 75 C min...

Page 3: ...nsated Start function will bring on the unit at 7 45 AM as determined from previous operation so the room temperature will be at 72 F when the occupied time starts If the unit has been configured for a pre occupancy purge then the control will start the unit in Vent mode prior to the occupancy time to vent the space If an IAQ indoor air quality sensor is being used and the low IAQ set point is sat...

Page 4: ...th gas valves are energized and both IGC boards initiate spark All of the gas heating control is performed through the IGC boards located in the heating section The MBB Main Base Board module board initiates and terminates heating operation and monitors the status of the requirements for indoor fan operation The fan will be controlled directly by the MBB board When the thermostat or room sensor ca...

Page 5: ...c 1 0vac Y2 Thermostat Y2 input DI6 J7 7 8 8 0 24vac 1 0vac Y1 Thermostat Y1 input DI7 J7 9 10 10 0 24vac 1 0vac CSB_A1 Compressor A1 current sensor DIG1 J9 10 12 10 5v 11 Vin 12 GND 0 5vdc 1 0vdc CSB_A2 Compressor A2 current sensor DIG2 J9 7 9 7 5v 8 Vin 9 GND 0 5vdc 1 0vdc CSB_B1 Compressor B1 current sensor DIG3 J9 4 6 4 5v 5 Vin 6 GND 0 5vdc 1 0vdc CSB_B2 Compressor B2 current sensor DIG4 J9 1...

Page 6: ...pply Fan Inverter speed AO1 J9 1 2 1 0 20mA 2 GND 0 20mA OUT PP MP J7 1 3 1 PP MP Data 2 24VAC 3 GND Belimo PP MP Protocol RLY1 J8 1 3 1 2 RLY1A 3 RLY1B 1 Closes RLY1A RLY1B RLY 2 J8 4 6 4 5 RLY2A 6 RLY2B 1 Closes RLY2A RLY2B RLY 3 J8 7 9 7 8 RLY3A 9 RLY3B 1 Closes RLY3A RLY3B MLV Minimum load valve RLY 6 J8 16 18 16 17 RLY6A 18 RLY6B 1 Closes RLY6A RLY6B POINT NAME POINT DESCRIPTION I O POINT NAM...

Page 7: ...gic 8 Grd ground TB 4 THEROMSTAT CONNECTIONS HY84HA090 in Main Control Box TB4 1 Thermostat R 24 VAC Power 2 Thermostat Y1 24 VAC Input 3 Thermostat Y2 24 VAC Input 4 Thermostat W1 24 VAC Input 5 Thermostat W2 24 VAC Input 6 Thermostat G 24 VAC Input 7 Thermostat C 24 VAC Common 8 Thermostat X Alarm Contact 24 VAC Output TB 5 FIELD CONNECTIONS HY84HA101 in Main Control Box TB5 1 VAV Heater Interlo...

Page 8: ...8 Fig 1 Component Arrangement 48 50A2 A3 A4 A5020 035 Units a48 8308 ...

Page 9: ...nent Arrangement 48 50A2 A3 A4 A5040 060 Units a48 8309 LOCATIONS ARE TYPICAL FOR ALL SIZE 040 060 UNITS SIZE 060 RTPF ROUND TUBE PLATE FIN UNITS HAVE 6 SIX OUTDOOR FAN ASSEMBLIES UNIT SHOWN IS A 50 SERIES SIZE 040 ...

Page 10: ...10 Fig 3 Power Schematic 48 50A2 A3 A4 A5020 050 Units a48 8385 ...

Page 11: ...11 Fig 4 Power Schematic 48 50A2 A3 A4 A5060 RTPF Units a48 8386 ...

Page 12: ...12 Fig 5 Power Schematic 48 50A2 A3 A4 A5060 MCHX Units a48 8387 ...

Page 13: ...13 TO NEXT PAGE Fig 6 Main Control Box Circuit 48 50A2 A3 A4 A5020 060 Units a48 8388 ...

Page 14: ...14 TO PREVIOUS PAGE a48 8389 Fig 6 Main Control Box Circuit 48 50A2 A3 A4 A5020 060 Units cont ...

Page 15: ...15 ABB ACS800 DRIVE NOT USED ABB ACS550 DRIVE STANDARD TOSHIBA E3 DRIVE NOT USED Fig 7 Auxiliary Control Box Wiring 48 50A2 A3 A4 A5020 060 Units a48 8390 ...

Page 16: ...16 Fig 8 Controls Expansion Board Wiring 48 50A2 A3 A4 A5020 060 Units a48 8261 ...

Page 17: ...17 Fig 9 Gas Heat Control Circuit 2 Stage Heat 48A2 A3 A4 A5020 050 Units a48 8310 ...

Page 18: ...18 Fig 10 Gas Heat Control Circuit 2 Stage Heat 48A2 A3 A4 A5060 Units a48 8311 ...

Page 19: ...19 Fig 11 Gas Heat Control Circuit Staged Gas Heat 48A2 A3 A4 A5020 050 Units a48 8313 ...

Page 20: ...20 Fig 12 Gas Heat Control Circuit Staged Gas Heat 48A2 A3 A4 A5060 Units a48 8315 ...

Page 21: ...21 Fig 13 Electric Heat Control Circuit 50A2 A3 A4 A5020 050 Units a48 8266 ...

Page 22: ...22 Fig 14 Electric Heat Control Circuit 50A2 A3 A4 A5060 Units a48 8267 ...

Page 23: ...1 TB2 575 3 60 TB1 TB2 208 3 60 TB13A TB2 3 Add FR relay in parallel with OFC1 Fig 16 Motormaster V Accessory Wiring 48 50A2 A3 A4 A5040 050 and 48 50A2 A3 A4 A5060 RTPF Units NOTES 1 Motormaster control to be wired directly to CCB cir cuit breaker and the OFC1 contactor should be removed from the wiring 2 Connect start relay FR to the following terminals 230 3 60 TB1 TB2 460 3 60 TB1 TB2 575 3 60...

Page 24: ...5060 MCHX Units LEGEND CCB Control Circuit Breaker FR Fan Relay MM F Motormaster V Fuses MMPT Motormaster V Pressure Transducer MMV Motormaster V OFC Outdoor Fan Contactor OFM Outdoor Fan Motor TB Terminal Block NOTES 1 Motormaster control to be wired directly to CCB circuit breaker and the OFC1 contactor should be removed from the wiring 2 Connect start relay FR to the following terminals 230 3 6...

Page 25: ...E 060 36 kW 575 V SIZES 020 050 54 kW 575 V SIZE 060 72 kW 575 V SIZES 020 050 108 kW 575 V SIZE 060 Fig 19 Electric Heater Power Diagrams 72 kW 460 V SIZES 020 050 49 kW 380 V SIZES 020 050 108 kW 460 V SIZE 060 74 kW 380 V SIZE 060 a48 6694 a48 6695 a48 6696 a48 6697 a48 6698 a48 6699 LEGEND FU Fuse HC Heater Contactor TB Terminal Block Terminal Marked Terminal Block Terminal Unmarked Factory Wi...

Page 26: ......

Page 27: ......

Page 28: ... to discontinue or change at any time specifications or designs without notice and without incurring obligations Catalog No 04 56480002 01 Printed in U S A Form 48 50A 3W Pg 28 508 4 08 Replaces New Copyright 2008 Carrier Corporation ...

Reviews: