background image

2  

Installation Guide

Depending on the required configuration the LED head may have been 
pre-installed in a microscope coupling (described in a separate manual), or it 
may be a discrete unit. Either way we would recommend connecting the LED to 
the controller box using the DIN plugs provided and pointing the LED (or output 
of coupling) at a piece of white paper 

(

NEVER VIEW THE LEDS DIRECTLY

)

Next connect the power supply to the mains, and read the following description 
of the controls before verifying operation. 
The front and rear panel controls are described in detail below, but if the user 
bears in mind that the LED has independent controls to set whether it is on or 
off and to set the intensity, and that either of these can be applied from the 
front panel or externally (e.g. from a PC) then operation is quite intuitive.

‘OFF / EXT/ON’ switch

This switch allows the LED to be permanently 'ON', permanently 'OFF' or 
digitally controlled 'EXT’. The digital signal is applied via the TTL (5V) 'EXT' 
socket on the rear panel and allows the LED to be switched between on and off 
very rapidly. When the switch is in the on or off position, this digital signal is 
overridden.

‘CURRENT’ Control

This control sets the LED drive current when the 'INT/EXT' switch on the front 
panel is in the 'INT'ernal position (otherwise control is via an external voltage). 
The current can be set between 0 and 5A, but the protection circuit in the LED 
head will usually limit maximum current.

‘LED ON’ Indicator

This indicator is illuminated whenever the corresponding LED is on. If it is lit and 
there is no light at the LED head then it is probably because the intensity level 
is set to zero on the front panel or the applied intensity voltage is 0V (if using 
the device under external intensity control). Since its status is affected by the 
digital control signals, this indicator may appear to be illuminated more or less 
brightly if the applied signals are changing too rapidly to be followed by eye.

‘OVERLOAD’ Indicator

If either the steady or the transient power through the LED exceed values 
preset by components within the LED head, this indicator will illuminate for 
about 1 sec, during which time the drive current will be switched off to protect 
the LED. Resetting is automatic, but the overload condition will keep re 
triggering for as long as the power remains above these values.
For users who, 

at their own risk

 of course(!), wish to experiment with the 

overload parameters, and/or wish to make their own custom LED heads, the

 

necessary information for how to do this is given in the Appendix.

‘POWER ON’ Indicator

This indicator is illuminated when the power is turned on both at the main 
socket as well as the power on switch located on the rear panel.

‘INT/EXT’ Switch

This switch controls whether the current applied to the LED is set from the 
front panel dial or referenced to an external voltage applied to the rear panel.

‘TTL INPUT’

This is a logic-level (i.e. 0V or +5V) input, which determines whether the LED is 
on or off when in the 'EXT' mode. This input is at a logic low level by default if it 
isn't connected to a suitable drive signal.

‘EXT LEVEL’

This is an external analogue input for the LED drive level where the input range 
is 0 to +5V. Each change in 1V corresponds to a change in 1A.

‘ROTARY DIN’ Socket

This is an 8-pin locking DIN socket for connection to the LED head. In case you 
would like to make up your own custom LED heads, the connections are 
described in the Appendix.

‘POWER’ Switch

This switch needs to be turned on for the machine to operate

 

3  

Technical summary

LED technology is continuing to develop rapidly. The first LEDs operated mainly 
in the red or infra-red, and were relatively weak. However, they are now 
available with wavelengths across the visible spectrum, even extending into 
ultraviolet. Intensities have also increased by literally orders of magnitude, now 
rivalling incandescent lamps, and in many cases competing with arc lamps. 
The continual intensity improvements have caused some manufacturers to 
run short of superlatives for their newer devices, which therefore have to be 
called "superhyperultrabright" or some similar nonsense.
Of course, the major incentive for the development of brighter devices has 
been their potential use as illumination sources, rather than just as indicators. 
LED light sources have developed at a very fast rate over recent years and 
Cairn have now developed their own range of LED light sources for microscopy 
/ macroscopy.
The general characteristics of LEDs are as follows. Since they are a type of 
diode, they have the basic characteristics of such devices, i.e. they only pass 
current in one direction, and the current rises very rapidly once the voltage in 
that direction exceeds a certain threshold. Ordinary silicon diodes have a 
threshold voltage of about 0.65V, but LEDs have significantly higher 
thresholds, e.g. around 1.2V for a standard red indicator LED. Devices 
designed for shorter wavelengths tend to have higher thresholds, of maybe 
around 2V or so, and in spite of the fairly steep diode characteristic they may 
drop as much as 3 or 4V when driven at full power. These figures are all for a 
single LED; please note that some "LEDs" may actually consist of several 
devices in series,
in which case their operating voltages will be correspondingly higher. In all 
cases the light output from an LED is approximately proportional to the 
current, so this is the parameter that one needs to control for optical as well 
as electrical reasons.
In order to drive an LED safely and reliably, a current source rather than a 
voltage source is required. For low-power operation a voltage source can be 
converted into a reasonable approximation of a current source by applying a 
voltage significantly in excess of the device's threshold voltage in series with an 
appropriate resistance. This is fine for indicator LEDs, where the current is low 
and unlikely to be varied, but is far less suited for power applications. In this 
case the only way to vary the power with reasonable efficiency is to vary the 
series resistance, and this really isn't feasible to do directly. Instead, a 
constant-current power supply with a variable current output is far more 
suitable, so this is what we are using here.
However, just as a constant-voltage power supply has a maximum output 
current, so does a constant-current power supply have a maximum output 

voltage, and for general cost and efficiency reasons it is important to match 
the current or voltage limits to match what is reasonably to be expected. The 
OptoLED Lite controller therefore normally has a maximum output voltage of 
about 5V. We chose this value because it can comfortably drive one LED head.
As to current ranges, indicator LEDs typically have maximum current ratings 
of a few tens of mill amps at most, whereas those used for illumination may 
require up to several amps. The standard drive current range for our supply is 
0-5A. Although LEDs may become somewhat less efficient at higher currents, 
their maximum output is ultimately limited not by optical saturation but by 
thermal dissipation. Therefore, it is perfectly permissible for an LED to be 
driven transiently at a higher current than the safe steady-state limit. The 
extent to which this can be done, i.e. how much higher a current can be applied 
for how long, will depend on the characteristics of that particular type of LED, 
but information about this may be available in the device's data sheet. 
Otherwise, as a rough guide, we're talking about times of up to perhaps a few 
tens of milliseconds. In any case, most LEDs are relatively cheap, and they can 
be destroyed without damaging the power supply, then trial and error may be 
a perfectly acceptable way of exploring their safe operating limits.
Finally, a few notes about the most suitable types of LED. For general 
illumination purposes, the more powerful types are clearly to be preferred. 
However, for microscope illumination the situation is rather different, and in 
practice better results may be achieved from using a less powerful LED here. 
The reason for this is as follows. A high-magnification microscope needs to use 
the condenser (or objective in the case of epi-illumination) to focus the light 
onto a very small area. This requires the light going into the condenser or 
objective to be nearly parallel, which is only the case if it has come from (or 
behaves as if it has come from) a very compact source. Unless the output per 
unit source area is also higher, any increase in source size above about 1mm 
is unlikely to give brighter illumination, although it will make set-up less critical.
The chip size and configuration in the device is easily observable, and a 
common configuration for the multi chip devices is to have four emitters in a 
square array. For more general illumination, LED arrays with many more 
devices are also available. The OptoLED Lite can drive any of these as long as 
their required voltage and current requirements are within the specifications 
given below.

4  

Specifications

Mains input voltage 85-260V, 50-60Hz, CE compliant

Maximum output 20V

Maximum output current 5A

Response time to change in external analogue input <10usec

External analogue control voltage range 0 to+5V

Digital inputs TTL level (0V or +5V nominal)

Overload detection, parameters set by components in the LED heads

cut-out duration during overload, 1 sec nominal, auto reset

 Appendix

The information given here is provided to allow users to construct their own 
LED heads if they wish to do so. Alternatively - and perhaps more conveniently 
- it will allow heads supplied by us to be customised to use other LEDs if 
required.

5.1  

LED Head Connections

The LED head has an 8-way locking DIN connector. The pin numbering for 
these connectors can most politely be described as bizarre, having evolved 
from connectors with fewer and more widely spaced pins. Therefore the pin 
numbers are just given here for reference, as the following visual description is 
likely to be much more helpful. Looking into the back (cable side) of the plug, 
oriented with the locator slot at the bottom, you will see seven pins forming
most of a circle, with an eighth one (which actually is pin 8!) near the centre. 
The connections are described in a sequence going clockwise from the pin to 
the left of the locator slot, and ending with the near-central one. Heads for the 
OptoLED Lite to not include a feedback photodiode so only the pins indicated in 
bold are used. The heads are interchangeable between the OptoLED and the 
OptoLED Lite, with the extra functionality only being active if the full OptoLED 
heads are used with a full OptoLED controller.
Pin 6    Positive connection to the LED.
Pin 1    Negative (ground) connection to the LED.
Pin 4    “Array” signalling connection. If this pin is connected to a positive  
 

voltage source, i.e. the positive supply voltage for the photodiode  

 

amplifier on pin 7, the “array” indicator on the controller will be  

 

illuminated, and the power readings on the meter will be reduced by  

 

a factor of 10, to allow power levels of 20W or more to be displayed.  

 

Otherwise this pin should be left disconnected.

Pin 2   Input connection for the overload protection network. The resistors  
 

and capacitor comprising this network should be connected   

between here and ground, i.e. pin 3.
Pin 5   Signal output from the photodiode amplifier.
Pin 3   Ground connection for the protection network and the photodiode  
 amplifier.
Pin 7 

Positive supply (+12 to +24V, depending on the drive voltage  

 

requirements for the LED, which are selected automatically) for the  

 

photodiode amplifier.

Pin 8   Negative supply (-5V) for the photodiode amplifier. Note that the  
 

controller detects the presence of an LED head by the current drawn  

 

from here by the photodiode amplifier.

Therefore if no amplifier is fitted, a 10Kohm resistor should be connected from 
here to ground (pin 3) in order to provide a dummy load.

5.2  

Overload protection

The overload protection is programmed by an RC network in the plug for the 
LED head. Thisnetwork forms part of a voltage divider from the measured 
power signal. Normally the power signal is 100mV/W, except when an LED 
array is used (detected by another connection in the LED head plug), in which 
case the signal is 10mV/W to allow higher powers to be controlled.
In both cases the power signal is connected to one of two comparator inputs 
(the signal input) in the OptoLED via a 100K resistor. This comparator input 
also connects to the RC network in the plug via a 1K series resistor (the 
resistor slightly complicates the RC network calculations but is there to 
protect the comparator input), and the other end of the RC network is 
connected to ground. The other comparator input (the reference input) is 
connected to a 200mV internal reference input.
Overload is triggered as soon as the signal input at the comparator exceeds 
the reference input; this cuts the power for about 1 second. If the protection 
“network” is just a single resistor, overload will be triggered as soon as the 
power exceeds the value set by this resistor. In practice, however, LEDs can be 
transiently over driven, and this can be permitted by connecting a second 
resistor in parallel with the first, but with a capacitor in series with the second 
resistor. The peak (transient) power is set by the parallel value of the two 
resistors, and this declines to the steady-state value set by the first resistor, 
with a time constant that depends on the resistor and capacitor values.
The resistance value R in K ohms to set a given steady-state power level P in 
watts is given by
R = 20/(0.1P-0.2) - 1
Solving for P rather than for R we obtain
P = 2 + (200/R+1)
These relations give a minimum power of 2W (or 20W for an array) when R is 
infinite.

Calculated values and nearest preferred resistor values for higher powers are 
as follows:
Power  

Calculated 

Preferred

3W  

 

199K    

200K

4W  

 

99K  

 

100K

5W  

 

65.7K    

68K

6W  

 

49K  

 

47K

7W  

 

39K  

 

39K

8W  

 

32.3K    

33K

9W  

 

27.6K    

27K

10W    

24K  

 

22K

12W    

19K  

 

18K

15W    

14.4K    

15K

17W    

12.3K    

12K

20W    

10.1K    

10K

25W    

7.7K    

7K5

30W    

6.1K    

6K2

40W    

4.3K    

4K3

50W    

3.2K    

3K3

100W    

1.04K    

1K

These resistor values correspond to tenfold higher power levels in array mode, 
which is signalled as described in the LED head connections section of this 
Appendix. Note that the highest power that can be metered is 20W (200W 
for an array, although that power can't be achieved in practice), but the 
overload circuitry can in theory measure power levels of up to 100W.
For many LEDs the maximum drive specification may be given as a current 
rather than a power. In such cases the voltage drop across the LED at its 
maximum rated current should be measured and then multiplied by the 
current to determine the equivalent power level. This voltage is likely to be in 
the 3-4V range for green and blue LEDs, possibly rather more for UV devices 
and rather less for red ones. The permissible transient power levels may well 
not be quoted, so may need to be determined by trial and error if you want to 
exploit this possibility.  Transient levels of 2-4 times the steady-state level, with

 

a decay time constant of around 10-20msec or possibly a little longer, will 
probably be about as far as we can go.
For setting a higher transient power overload level, another resistor Rp, in 
series with a capacitor C is connected in parallel with the resistance R 
calculated as above. The steady-state overload level will be the same as before, 
and the transient level will be given by the value of the two resistances in 
parallel. The procedure is to choose the effective parallel resistance value, Reff, 
of R and Rp to give the required transient level, and then to calculate Rp from 
the relation Rp = 1/ (1/Reff - 1/R).
The time constant with which the overload power level declines from its 
transient to its steadystate value is set by the capacitance C that is in series 
with the parallel resistor, in conjunction with an equivalent resistance Re, to 
give a time constant of ReC. The procedure for calculating C for a given time 
constant T is as follows. First calculate Re, which is given by R+1K in parallel 
with 100K, in series with Rp, i.e. Re = 1/{1/(R+1K) + 1/100K} + Rp. Then 
calculate the required value of C from C = T/Re.
These components are connected between pins 2 (signal) and 3 (ground) of 
the connector plug. The orientation is unimportant, but by convention it makes 
more sense to have the capacitor on the ground side.
A practical example may be helpful in order to give some idea of the typical size 
of C. Let us assume we want a transient power level of 10W, declining to a 
steady-state level of 5W with a 10msec time constant. From the table we 
select 68K for R to get 5W steady-state power, and then select Rp to give a 
resistance of 24K (for R and Rp in parallel) to get 10W transient power. This 
requires Rp to be 37K, for which the nearest preferred value of 39K will be 
close enough. We now calculate Re as above to get a value of 79.8K, giving a 
required value of C of about 125nF, for which either 120nF, or 100nF in 
parallel with 22nF, would be close enough. 

6  

Technical Support

e-mail :    

[email protected]

Web :   

http://www.cairn-research..co.uk/

Address :  

Cairn Research Ltd

  Graveney 

Road

  Faversham
  Kent
  ME13 

8UP

Telephone :  

+44 (0) 1795 590 140

Fax :  

 

+44 (0) 1795 594 510

Page 3

Summary of Contents for OptoLed Lite

Page 1: ...www cairn research co uk Free Phone 08453301267 UK only Tel 44 0 1795590140 Fax 44 0 1795594510 OptoLed Lite Instruction Manual Specialists in Fluoresence Microscopy DESIGN TO INTEGRATION ...

Page 2: ......

Page 3: ...on or fluorescence This is especially important with ULTRAVIOLET LEDs which will not appear bright to the human eye but can cause permanent damage if not used with care 2 Our standard LED heads have built in protection to avoid damage however if in any doubt then please check with Cairn as to the rated power of the supplied heads and use accordingly 3 The OptoLED is typically supplied in conjuncti...

Page 4: ......

Page 5: ...Contents 1 Introduction 1 2 Installation Guide 3 Technical Summary 4 4 Specifications 6 5 Appendix 7 5 1 LED Head Connections 7 5 2 Overload Protection 8 6 Technical Support 11 ...

Page 6: ...higher transient current limit to be set By incorporating the protection setting components in each LED head they can be tailored to match the maximum safe levels for that type of LED In addition digital inputs are provided to switch the LED on and off with rise and fall times of just a few microseconds for faster requirements you will need the full OptoLED The operation of the unit will now be de...

Page 7: ...overridden CURRENT Control This control sets the LED drive current when the INT EXT switch on the front panel is in the INT ernal position otherwise control is via an external voltage The current can be set between 0 and 5A but the protection circuit in the LED head will usually limit maximum current LED ON Indicator This indicator is illuminated whenever the corresponding LED is on If it is lit a...

Page 8: ... logic level i e 0V or 5V input which determines whether the LED is on or off when in the EXT mode This input is at a logic low level by default if it isn t connected to a suitable drive signal EXT LEVEL This is an external analogue input for the LED drive level where the input range is 0 to 5V Each change in 1V corresponds to a change in 1A ROTARY DIN Socket This is an 8 pin locking DIN socket fo...

Page 9: ... around 1 2V for a standard red indicator LED Devices designed for shorter wavelengths tend to have higher thresholds of maybe around 2V or so and in spite of the fairly steep diode characteristic they may drop as much as 3 or 4V when driven at full power These figures are all for a single LED please note that some LEDs may actually consist of several devices in series in which case their operatin...

Page 10: ...heap and they can be destroyed without damaging the power supply then trial and error may be a perfectly acceptable way of exploring their safe operating limits Finally a few notes about the most suitable types of LED For general illumination purposes the more powerful types are clearly to be preferred However for microscope illumination the situation is rather different and in practice better res...

Page 11: ...output current 5A Response time to change in external analogue input 10usec External analogue control voltage range 0 to 5V Digital inputs TTL level 0V or 5V nominal Overload detection parameters set by components in the LED heads cut out duration during overload 1 sec nominal auto reset Page 6 ...

Page 12: ...include a feedback photodiode so only the pins indicated in bold are used The heads are interchangeable between the OptoLED and the OptoLED Lite with the extra functionality only being active if the full OptoLED heads are used with a full OptoLED controller Pin 6 Positive connection to the LED Pin 1 Negative ground connection to the LED Pin 4 Array signalling connection If this pin is connected to...

Page 13: ... calculations but is there to protect the comparator input and the other end of the RC network is connected to ground The other comparator input the reference input is connected to a 200mV internal reference input Overload is triggered as soon as the signal input at the comparator exceeds the reference input this cuts the power for about 1 second If the protection network is just a single resistor...

Page 14: ...00W for an array although that power can t be achieved in practice but the overload circuitry can in theory measure power levels of up to 100W For many LEDs the maximum drive specification may be given as a current rather than a power In such cases the voltage drop across the LED at its maximum rated current should be measured and then multiplied by the current to determine the equivalent power le...

Page 15: ...procedure for calculating C for a given time constant T is as follows First calculate Re which is given by R 1K in parallel with 100K in series with Rp i e Re 1 1 R 1K 1 100K Rp Then calculate the required value of C from C T Re These components are connected between pins 2 signal and 3 ground of the connector plug The orientation is unimportant but by convention it makes more sense to have the ca...

Page 16: ...chnical Support e mail tech cairn research co uk Web http www cairn research co uk Address Cairn Research Ltd Graveney Road Faversham Kent ME13 8UP Telephone 44 0 1795 590 140 Fax 44 0 1795 594 510 Page 11 ...

Page 17: ...Page 12 ...

Page 18: ...Page 13 ...

Page 19: ...Page 14 ...

Page 20: ...Page 15 ...

Page 21: ...Page 16 ...

Reviews: