background image

AT45DB321

4

MAIN MEMORY PAGE TO BUFFER TRANSFER:

 A page

of data can be transferred from the main memory to either
buffer 1 or buffer 2. An 8-bit opcode, 53H for buffer 1 and
55H for buffer 2, is followed by one reserved bit, 13
address bits (PA12-PA0) which specify the page in main
memory that is to be transferred, and 10 don’t care bits.
The CS pin must be low while toggling the SCK pin to load
the opcode, the address bits, and the don’t care bits from
the SI pin. The transfer of the page of data from the main
memory to the buffer will begin when the CS pin transitions
from a low to a high state. During the transfer of a page of
data (t

XFR

), the status register can be read to determine

whether the transfer has been completed or not.

MAIN MEMORY PAGE TO BUFFER COMPARE:

 A page

of data in main memory can be compared to the data in
buffer 1 or buffer 2. An 8-bit opcode, 60H for buffer 1 and
61H for buffer 2, is followed by 24 address bits consisting of
one reserved bit, 13 address bits (PA12-PA0) which spec-
ify the page in the main memory that is to be compared to
the buffer, and 10 don't care bits. The loading of the
opcode and the address bits is the same as described pre-
viously. The CS pin must be low while toggling the SCK pin
to load the opcode, the address bits, and the don't care bits
from the SI pin. On the low to high transition of the CS pin,
the 528 bytes in the selected main memory page will be
compared with the 528 bytes in buffer 1 or buffer 2. During
this time (t

XFR

), the status register will indicate that the part

is busy. On completion of the compare operation, bit 6 of
the status register is updated with the result of the com-
pare.

Program

BUFFER WRITE:

 Data can be shifted in from the SI pin

into either buffer 1 or buffer 2. To load data into either
buffer, an 8-bit opcode, 84H for buffer 1 or 87H for buffer 2,
is followed by 14 don't care bits and 10 address bits (BFA9-
BFA0). The 10 address bits specify the first byte in the
buffer to be written. The data is entered following the
address bits. If the end of the data buffer is reached, the
device will wrap around back to the beginning of the buffer.
Data will continue to be loaded into the buffer until a low to
high transition is detected on the CS pin.

BUFFER TO MAIN MEMORY PAGE PROGRAM WITH
BUILT-IN ERASE:

 Data written into either buffer 1 or buffer

2 can be programmed into the main memory. An 8-bit
opcode, 83H for buffer 1 or 86H for buffer 2, is followed by
one reserved bit, 13 address bits (PA12-PA0) that specify
the page in the main memory to be written, and 10 addi-
tional don't care bits. When a low to high transition occurs
on the CS pin, the part will first erase the selected page in

main memory to all 1s and then program the data stored in
the buffer into the specified page in the main memory. Both
the erase and the programming of the page are internally
self timed and should take place in a maximum time of t

EP

.

During this time, the status register will indicate that the
part is busy.

BUFFER TO MAIN MEMORY PAGE PROGRAM WITH-
OUT BUILT-IN ERASE:

 A previously erased page within

main memory can be programmed with the contents of
either buffer 1 or buffer 2. An 8-bit opcode, 88H for buffer 1
or 89H for buffer 2, is followed by one reserved bit, 13
address bits (PA12-PA0) that specify the page in the main
memory to be written, and 10 additional don’t care bits.
When a low to high transition occurs on the CS pin, the part
will program the data stored in the buffer into the specified
page in the main memory. It is necessary that the page in
main memory that is being programmed has been previ-
ously erased. The programming of the page is internally
self timed and should take place in a maximum time of t

P

.

During this time, the status register will indicate that the
part is busy.

PAGE ERASE:

 The optional Page Erase command can be

used to individually erase any page in the main memory
array allowing the Buffer to Main Memory Page Program
without Built-In Erase command to be utilized at a later
time. To perform a Page Erase, an opcode of 81H must be
loaded into the device, followed by one reserved bit, 13
address bits (PA12-PA0), and 10 don’t care bits. The 13
address bits are used to specify which page of the memory
array is to be erased. When a low to high transition occurs
on the CS pin, the part will erase the selected page to 1s.
The erase operation is internally self-timed and should take
place in a maximum time of t

PE

. During this time, the status

register will indicate that the part is busy. 

BLOCK ERASE:

 A block of eight pages can be erased at

one time allowing the Buffer to Main Memory Page Pro-
gram without Built-In Erase command to be utilized to
reduce programming times when writing large amounts of
data to the device. To perform a Block Erase, an opcode of
50H must be loaded into the device, followed by one
reserved bit, 10 address bits (PA12-PA3), and 13 don’t
care bits. The 10 address bits are used to specify which
block of eight pages is to be erased. When a low to high
transition occurs on the CS pin, the part will erase the
selected block of eight pages to 1s. The erase operation is
internally self-timed and should take place in a maximum
time of t

BE

. During this time, the status register will indicate

that the part is busy.

Summary of Contents for DataFlash AT45DB321

Page 1: ... only serial interface Flash memory suitable for in sys tem reprogramming Its 34 603 008 bits of memory are organized as 8192 pages of 528 bytes each In addition to the main memory the AT45DB321 also contains two SRAM data buffers of 528 bytes each The buffers allow receiving of data while a page in the main memory is being reprogrammed Unlike conventional Flash memo Rev 1121E 01 01 Pin Configurat...

Page 2: ...oltages for pro gramming The device operates from a single power sup ply 2 7V to 3 6V for both the program and read operations The AT45DB321 is enabled through the chip select pin CS and accessed via a three wire interface consisting of the Serial Input SI Serial Output SO and the Serial Clock SCK All programming cycles are self timed and no separate erase cycle is required before programming Bloc...

Page 3: ... pin The CS pin must remain low during the loading of the opcode the address bits and the reading of data When the end of a page in main memory is reached during a main memory page read the device will continue reading at the beginning of the same page A low to high transition on the CS pin will terminate the read operation and tri state the SO pin BUFFER READ Data can be read from either one of t...

Page 4: ...ry to be written and 10 addi tional don t care bits When a low to high transition occurs on the CS pin the part will first erase the selected page in main memory to all 1s and then program the data stored in the buffer into the specified page in the main memory Both the erase and the programming of the page are internally self timed and should take place in a maximum time of tEP During this time t...

Page 5: ...program the data from the buffer back into same page of main memory The operation is internally self timed and should take place in a maximum time of tEP During this time the status register will indicate that the part is busy If a sector is programmed or reprogrammed sequentially page by page then the programming algorithm shown in Figure 1 is recommended Otherwise if multiple bytes in a page or ...

Page 6: ...buffer 2 or vice versa See application note AN 4 Using Atmel s Serial DataFlash for more details HARDWARE PAGE WRITE PROTECT If the WP pin is held low the first 256 pages of the main memory cannot be reprogrammed The only way to reprogram the first 256 pages is to first drive the protect pin high and then use the program commands previously mentioned The WP pin is internally pulled high therefore ...

Page 7: ... only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied Exposure to absolute maximum rating conditions for extended periods may affect device reliability Storage Temperature 65 C to 150 C All Input Voltages including NC Pins with Respect to Ground 0 6V to 6 25V All Output Voltages with Res...

Page 8: ...l Parameter Min Max Units fSCK SCK Frequency 13 MHz tWH SCK High Time 35 ns tWL SCK Low Time 35 ns tCS Minimum CS High Time 250 ns tCSS CS Setup Time 250 ns tCSH CS Hold Time 250 ns tCSB CS High to RDY BUSY Low 200 ns tSU Data In Setup Time 10 ns tH Data In Hold Time 20 ns tHO Output Hold Time 0 ns tDIS Output Disable Time 25 ns tV Output Valid 30 ns tXFR Page to Buffer Transfer Compare Time 350 µ...

Page 9: ...hold times for the SI signal are referenced to the low to high transition on the SCK signal Waveform 1 shows timing that is also compatible with SPI Mode 0 and Waveform 2 shows timing that is compatible with SPI Mode 3 Waveform 1 Inactive Clock Polarity Low Waveform 2 Inactive Clock Polarity High CS SCK SI SO tCSS VALID IN tH tSU tWH tWL tCSH tCS tV HIGH IMPEDANCE VALID OUT tHO tDIS HIGH IMPEDANCE...

Page 10: ...t r be a logical 0 for densities of 32M bit or smaller 3 For densities larger than 32M bit the r bits become the most significant Page Address bit for the appropriate density CS SCK RESET SO SI HIGH IMPEDANCE HIGH IMPEDANCE tRST tREC tCSS SI CMD 8 bits 8 bits 8 bits MSB Reserved for larger densities Page Address PA12 PA0 Byte Buffer Address BA9 BA0 BFA9 BFA0 LSB r X X X X X X X X X X X X X X X X X...

Page 11: ...IN MEMORY PAGE PROGRAM MAIN MEMORY PAGE PROGRAM THROUGH BUFFER 2 BUFFER 2 TO MAIN MEMORY PAGE PROGRAM MAIN MEMORY PAGE PROGRAM THROUGH BUFFER 1 BUFFER 1 WRITE BUFFER 2 WRITE SI CMD n n 1 Last Byte Completes writing into selected buffer Starts self timed erase program operation CS r PA12 6 PA5 0 BFA9 8 BFA7 0 SI CMD X X X BFA9 8 BFA7 0 n n 1 Last Byte Completes writing into selected buffer CS SI CM...

Page 12: ...RY ARRAY PAGE 528 BYTES BUFFER 2 528 BYTES BUFFER 1 528 BYTES I O INTERFACE MAIN MEMORY PAGE TO BUFFER 1 MAIN MEMORY PAGE TO BUFFER 2 MAIN MEMORY PAGE READ BUFFER 1 READ BUFFER 2 READ SO SI CMD PA5 0 BA9 8 BA7 0 X X X X CS n n 1 SO r PA12 6 SI CMD PA5 0 XX X Starts reading page data into buffer CS SO r PA12 6 SI CMD X X X BFA9 8 BFA7 0 CS n n 1 SO X n 1st byte read n 1 2nd byte read Each transitio...

Page 13: ...5 60 61 62 63 64 65 66 67 X X HIGH IMPEDANCE D7 D6 D5 DATA OUT COMMAND OPCODE MSB tSU tV SI 0 1 0 1 0 X X X CS SO SCK 1 2 3 4 5 36 37 38 39 40 41 42 43 X X HIGH IMPEDANCE D7 D6 D5 DATA OUT COMMAND OPCODE MSB tSU tV SI 0 1 0 1 0 1 1 1 CS SO SCK 1 2 3 4 5 7 8 9 10 11 12 16 17 HIGH IMPEDANCE D7 D6 D5 STATUS REGISTER OUTPUT COMMAND OPCODE MSB tSU tV 6 D1 D0 D7 LSB MSB ...

Page 14: ... 62 63 64 65 66 67 X X HIGH IMPEDANCE D7 D6 D5 DATA OUT COMMAND OPCODE MSB tSU tV D4 68 SI 0 1 0 1 0 X X X CS SO SCK 1 2 3 4 5 37 38 39 40 41 42 43 X X HIGH IMPEDANCE D7 D6 D5 DATA OUT COMMAND OPCODE MSB tSU tV D4 44 SI 0 1 0 1 0 1 1 1 CS SO SCK 1 2 3 4 5 7 8 9 10 11 12 17 18 HIGH IMPEDANCE D7 D6 D5 STATUS REGISTER OUTPUT COMMAND OPCODE MSB tSU tV 6 D4 D0 D7 LSB MSB D6 ...

Page 15: ...X PA10 X X PA10 PA10 PA10 PA10 X X PA9 X X PA9 PA9 PA9 PA9 X X PA8 X X PA8 PA8 PA8 PA8 X X PA7 X X PA7 PA7 PA7 PA7 X X PA6 X X PA6 PA6 PA6 PA6 X X PA5 X X PA5 PA5 PA5 PA5 X X PA4 X X PA4 PA4 PA4 PA4 X X PA3 X X PA3 PA3 PA3 PA3 X X PA2 X X PA2 PA2 PA2 PA2 X X PA1 X X PA1 PA1 PA1 PA1 X X PA0 X X PA0 PA0 PA0 PA0 X X BA9 BFA9 BFA9 X X X X BFA9 BFA9 BA8 BFA8 BFA8 X X X X BFA8 BFA8 BA7 BFA7 BFA7 X X X X...

Page 16: ... 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 1 r r r r r r r r r r PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA12 PA11 PA11 PA11 PA11 PA11 PA11 PA11 PA11 PA11 PA11 PA10 PA10 PA10 PA10 PA10 PA10 PA10 PA10 PA10 PA10 PA9 PA9 PA9 PA9 PA9 PA9 PA9 PA9 PA9 PA9 PA8 PA8 PA8 PA8 PA8 PA8 PA8 PA8 PA8 PA8 PA7 PA7 PA7 PA7 PA7 PA7 PA7 PA7 PA7 PA7 PA6 PA6 PA6 PA6 PA6 PA6 PA6 PA6 PA6 PA6 PA5 PA5 PA5 PA5 PA5 PA5 PA5 P...

Page 17: ...e 2 A page can be written using either a Main Memory Page Program operation or a Buffer Write operation followed by a Buffer to Main Memory Page Program operation 3 The algorithm above shows the programming of a single page The algorithm will be repeated sequentially for each page within the entire sector START MAIN MEMORY PAGE PROGRAM 82H 85H END provide address and data BUFFER WRITE 84H 87H BUFF...

Page 18: ...mulative page erase program operations have accumulated before rewriting all pages of the sector See application note AN 4 Using Atmel s Serial DataFlash for more details Sector Addressing PA12 PA11 PA10 PA9 PA8 PA7 PA6 PA5 PA4 PA3 Sector 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X 1 0 0 0 1 X X X X X X 2 0 0 1 0 X X X X X X 3 1 1 0 0 X X X X X X 13 1 1 0 1 X X X X X X 14 1 1 1 0 X X X X X X 15 1 1 ...

Page 19: ...5 x 9 Array 1 0 mm Pitch Plastic Chip scale Ball Grid Array CBGA Ordering Information fSCK MHz ICC mA Ordering Code Package Operation Range Active Standby 13 10 0 01 AT45DB321 TC AT45DB321 CC 32T 44C1 Commercial 0 C to 70 C 13 10 0 01 AT45DB321 TI AT45DB321 CI 32T 44C1 Industrial 40 C to 85 C ...

Page 20: ... 295 REF 8 20 323 7 80 307 1 20 047 MAX 0 15 006 0 05 002 0 5 REF 0 70 028 0 50 020 0 20 008 0 10 004 44C1 44 ball 5 x 9 Array 1 0 mm Pitch Plastic Chip scale Ball Grid Array CBGA Dimensions in Millimeters and Inches Controlling dimension millimeters 6 2 0 244 5 8 0 228 12 2 0 480 11 8 0 465 1 20 0 047 MAX 0 30 0 012 A B C D E F G H J 1 00 0 039 BSC NON ACCUMULATIVE 0 41 0 016 DIA BALL TYP 4 0 0 1...

Page 21: ...ux 41 Casa Postale 80 CH 1705 Fribourg Switzerland TEL 41 26 426 5555 FAX 41 26 426 5500 Asia Atmel Asia Ltd Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL 852 2721 9778 FAX 852 2722 1369 Japan Atmel Japan K K 9F Tonetsu Shinkawa Bldg 1 24 8 Shinkawa Chuo ku Tokyo 104 0033 Japan TEL 81 3 3523 3551 FAX 81 3 3523 7581 Atmel Colorado Springs 1150 E Cheyenne Mtn Bl...

Reviews: