162
ATmega8535(L)
2502K–AVR–10/06
Multi-processor
Communication Mode
Setting the Multi-processor Communication Mode (MPCM) bit in UCSRA enables a fil-
tering function of incoming frames received by the USART Receiver. Frames that do not
contain address information will be ignored and not put into the receive buffer. This
effectively reduces the number of incoming frames that has to be handled by the CPU,
in a system with multiple MCUs that communicate via the same serial bus. The Trans-
mitter is unaffected by the MPCM setting, but has to be used differently when it is a part
of a system utilizing the Multi-processor Communication Mode.
If the Receiver is set up to receive frames that contain five to eight data bits, then the
first stop bit indicates if the frame contains data or address information. If the Receiver is
set up for frames with nine data bits, then the ninth bit (RXB8) is used for identifying
address and data frames. When the frame type bit (the first stop or the ninth bit) is one,
the frame contains an address. When the frame type bit is zero the frame is a data
frame.
The Multi-processor Communication Mode enables several slave MCUs to receive data
from a Master MCU. This is done by first decoding an address frame to find out which
MCU has been addressed. If a particular Slave MCU has been addressed, it will receive
the following data frames as normal, while the other Slave MCUs will ignore the
received frames until another address frame is received.
Using MPCM
For an MCU to act as a Master MCU, it can use a 9-bit character frame format
(UCSZ = 7). The ninth bit (TXB8) must be set when an address frame (TXB8 = 1) or
cleared when a data frame (TXB = 0) is being transmitted. The Slave MCUs must, in this
case, be set to use a 9-bit character frame format.
The following procedure should be used to exchange data in Multi-processor Communi-
cation Mode:
1.
All Slave MCUs are in Multi-processor Communication Mode (MPCM in UCSRA
is set).
2.
The Master MCU sends an address frame, and all slaves receive and read this
frame. In the Slave MCUs, the RXC Flag in UCSRA will be set as normal.
3.
Each Slave MCU reads the UDR Register and determines if it has been
selected. If so, it clears the MPCM bit in UCSRA, otherwise it waits for the next
address byte and keeps the MPCM setting.
4.
The addressed MCU will receive all data frames until a new address frame is
received. The other Slave MCUs, which still have the MPCM bit set, will ignore
the data frames.
5.
When the last data frame is received by the addressed MCU, the addressed
MCU sets the MPCM bit and waits for a new address frame from Master. The
process then repeats from 2.
Using any of the 5- to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using n and n+1 character frame formats. This makes
full-duplex operation difficult since the Transmitter and Receiver uses the same charac-
ter size setting. If 5- to 8-bit character frames are used, the Transmitter must be set to
use two stop bit (USBS = 1) since the first stop bit is used for indicating the frame type.
Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCM bit.
The MPCM bit shares the same I/O location as the TXC Flag and this might accidentally
be cleared when using SBI or CBI instructions.
Summary of Contents for ATmega8535
Page 314: ...314 ATmega8535 L 2502K AVR 10 06 ...
Page 320: ...vi ATmega8535 L 2502K AVR 10 06 ...