Analog Devices ADSP-2186 Specification Sheet Download Page 8

ADSP-2186

–8–

REV. 0

There are 8K words of memory accessible internally when the
PMOVLAY register is set to 0. When PMOVLAY is set to some-
thing other than 0, external accesses occur at addresses 0x2000
through 0x3FFF. The external address is generated as shown in
Table II.

Table II.

PMOVLAY

Memory

A13

A12:0

0

Internal

Not Applicable Not Applicable

1

External

13 LSBs of Address

Overlay 1

0

Between 0x2000
and 0x3FFF

2

External

13 LSBs of Address

Overlay 2

1

Between 0x2000
and 0x3FFF

NOTE: Addresses 0x2000 through 0x3FFF should not be accessed when
PMOVLAY = 0.

This organization provides for two external 8K overlay segments
using only the normal 14 address bits, which allows for simple
program overlays using one of the two external segments in
place of the on-chip memory. Care must be taken in using this
overlay space in that the processor core (i.e., the sequencer)
does not take into account the PMOVLAY register value. For
example, if a loop operation was occurring on one of the exter-
nal overlays and the program changes to another external over-
lay or internal memory, an incorrect loop operation could occur.
In addition, care must be taken in interrupt service routines as
the overlay registers are not automatically saved and restored on
the processor mode stack.

When Mode B = 1, booting is disabled and overlay memory is
disabled (PMOVLAY must be 0). Figure 5 shows the memory
map in this configuration.

RESERVED

0x3FFF

0x2000

0x1FFF

8K EXTERNAL

0x0000

PROGRAM MEMORY

ADDRESS

Figure 5. Program Memory (Mode B = 1)

Data Memory

The ADSP-2186 has 8160 16-bit words of internal data memory.
In addition, the ADSP-2186 allows the use of 8K external memory
overlays. Figure 6 shows the organization of the data memory.

EXTERNAL 8K

(DMOVLAY = 1, 2)

INTERNAL

8160 WORDS

DATA MEMORY

ADDRESS

32 MEMORY–

MAPPED REGISTERS

0x3FFF

0x3FEO

0x3FDF

0x2000

0x1FFF

0x0000

Figure 6. Data Memory

There are 8160 words of memory accessible internally when the
DMOVLAY register is set to 0. When DMOVLAY is set to
something other than 0, external accesses occur at addresses
0x0000 through 0x1FFF. The external address is generated as
shown in Table III.

Table III.

DMOVLAY Memory

A13

A12:0

0

Internal

Not Applicable Not Applicable

1

External

13 LSBs of Address

Overlay 1

0

Between 0x2000
and 0x3FFF

2

External

13 LSBs of Address

Overlay 2

1

Between 0x2000
and 0x3FFF

This organization allows for two external 8K overlays using only
the normal 14 address bits. All internal accesses complete in one
cycle. Accesses to external memory are timed using the wait
states specified by the DWAIT register.

I/O Space (Full Memory Mode)

The ADSP-2186 supports an additional external memory space
called I/O space. This space is designed to support simple con-
nections to peripherals or to bus interface ASIC data registers.
I/O space supports 2048 locations. The lower eleven bits of the
external address bus are used; the upper three bits are unde-
fined. Two instructions were added to the core ADSP-2100
Family instruction set to read from and write to I/O memory
space. The I/O space also has four dedicated three-bit wait state
registers, IOWAIT0-3, which specify up to seven wait states to
be automatically generated for each of four regions. The wait
states act on address ranges as shown in Table IV.

Table IV.

Address Range

Wait State Register

0x000–0x1FF

IOWAIT0

0x200–0x3FF

IOWAIT1

0x400–0x5FF

IOWAIT2

0x600–0x7FF

IOWAIT3

Composite Memory Select (

CMS

)

The ADSP-2186 has a programmable memory select signal that
is useful for generating memory select signals for memories
mapped to more than one space. The 

CMS

 signal is generated

to have the same timing as each of the individual memory select
signals (

PMS

DMS

BMS

IOMS

), but can combine their

functionality.

Each bit in the CMSSEL register, when set, causes the 

CMS

signal to be asserted when the selected memory select is as-
serted. For example, to use a 32K word memory to act as both
program and data memory, set the 

PMS

 and 

DMS

 bits in the

CMSSEL register and use the 

CMS

 pin to drive the chip select

of the memory and use either 

DMS

 or 

PMS

 as the additional

address bit.

The 

CMS

 pin functions as the other memory select signals, with

the same timing and bus request logic. A 1 in the enable bit
causes the assertion of the 

CMS

 signal at the same time as the

selected memory select signal. All enable bits, except the 

BMS

bit, default to 1 at reset.

Summary of Contents for ADSP-2186

Page 1: ...STEM INTERFACE 16 Bit Internal DMA Port for High Speed Access to On Chip Memory Mode Selectable 4 MByte Byte Memory Interface for Storage of Data Tables Program Overlays 8 Bit DMA to Byte Memory for T...

Page 2: ...ort interface This interface pro vides a simpler target board connection that requires fewer mechanical clearance considerations than other ADSP 2100 Family EZ ICE s The ADSP 2186 device need not be r...

Page 3: ...ne edge sensitive two level sensitive and three configurable and seven internal interrupts generated by the timer the serial ports SPORTs the Byte DMA port and the power down circuitry There is also a...

Page 4: ...de which allows BDMA operation with full external overlay memory and I O capability or Host Mode which allows IDMA operation with limited external addressing capabilities The operating mode is determi...

Page 5: ...e The IRQE pin is an external edge sensitive interrupt and can be forced and cleared The IRQL0 and IRQL1 pins are external level sensitive interrupts The IFC register is a write only register used to...

Page 6: ...the serial clock rate may be faster than the processor s reduced internal clock rate Under these conditions interrupts must not be generated at a faster rate than can be serviced due to the additiona...

Page 7: ...resets the RESET signal must meet the mini mum pulse width specification tRSP The RESET input contains some hysteresis however if you use an RC circuit to generate your RESET signal the use of an exte...

Page 8: ...address is generated as shown in Table III Table III DMOVLAY Memory A13 A12 0 0 Internal Not Applicable Not Applicable 1 External 13 LSBs of Address Overlay 1 0 Between 0x2000 and 0x3FFF 2 External 13...

Page 9: ...MOVLAY When the BWCOUNT register is written with a nonzero value the BDMA circuit starts executing byte memory accesses with wait states set by BMWAIT These accesses continue until the count reaches z...

Page 10: ...e processor to hold off execution while booting continues through the BDMA interface For BDMA accesses while in Host Mode the ad dresses to boot memory must be constructed externally to the ADSP 2186...

Page 11: ...word that can execute in a single instruction cycle The syntax is a superset ADSP 2100 Family assembly lan guage and is completely source and object code compatible with other family members Programs...

Page 12: ...n for some memory access timing requirements and switching characteristics Note If your target does not meet the worst case chip specifica tion for memory access parameters you may not be able to emul...

Page 13: ...e brackets represent preliminary 40 MHz specifications NOTES 1 Bidirectional pins D0 D23 RFS0 RFS1 SCLK0 SCLK1 TFS0 TFS1 A1 A13 PF0 PF7 2 Input only pins RESET BR DR0 DR1 PWD 3 Input only pins CLKIN R...

Page 14: ...not meaningfully add up parameters to derive longer times TIMING NOTES Switching characteristics specify how the processor changes its signals You have no control over this timing circuitry external t...

Page 15: ...52 V 33 3 MHz 66 6 mW Data Output WR 9 10 pF 52 V 16 67 MHz 37 5 mW RD 1 10 pF 52 V 16 67 MHz 4 2 mW CLKOUT 1 10 pF 52 V 33 3 MHz 8 3 mW 116 6 mW Total power dissipation for this example is PINT 116...

Page 16: ...rrent load iL on the output pin It can be approximated by the fol lowing equation tDECAY CL 0 5V iL from which tDIS tMEASURED tDECAY is calculated If multiple pins such as the data bus are dis abled t...

Page 17: ...l Signals Timing Requirements tRSP RESET Width Low1 5 tCK ns tMS Mode Setup Before RESET High 2 ns tMH Mode Setup After RESET High 5 ns NOTES Parameters displayed inside brackets represent preliminary...

Page 18: ...ld requirements they will be recognized during the current clock cycle otherwise the signals will be recognized on the following cycle Refer to Interrupt Controller Operation in the Program Control ch...

Page 19: ...H xMS RD WR Disable to BGH Low2 0 ns tSEH BGH High to xMS RD WR Enable2 0 ns NOTES xMS PMS DMS CMS IOMS BMS 1 BR is an asynchronous signal If BR meets the setup hold requirements it will be recognized...

Page 20: ...0 ns Switching Characteristics tRP RD Pulse Width 0 5 tCK 5 w ns tCRD CLKOUT High to RD Low 0 25 tCK 5 0 25 tCK 7 ns tASR A0 A13 xMS Setup before RD Low 0 25 tCK 6 ns tRDA A0 A13 xMS Hold after RD Dea...

Page 21: ...S Setup before WR Low 0 25 tCK 6 ns tDDR Data Disable before WR or RD Low 0 25 tCK 7 ns tCWR CLKOUT High to WR Low 0 25 tCK 5 0 25 tCK 7 ns tAW A0 A13 xMS Setup before WR Deasserted 0 75 tCK 9 w ns tW...

Page 22: ...FS RFSOUT Hold after SCLK High 0 ns tRD TFS RFSOUT Delay from SCLK High 15 ns tSCDH DT Hold after SCLK High 0 ns tTDE TFS Alt to DT Enable 0 ns tTDV TFS Alt to DT Valid 14 ns tSCDD SCLK High to DT Dis...

Page 23: ...Address Hold after Address Latch End3 2 ns tIKA IACK Low before Start of Address Latch2 3 0 ns tIALS Start of Write or Read after Address Latch End2 3 3 ns NOTES 1 Start of Address Latch IS Low and I...

Page 24: ...4 5 ns tIDH IAD15 0 Data Hold after End of Write2 3 4 2 ns Switching Characteristics tIKHW Start of Write to IACK High 15 ns NOTES 1 Start of Write IS Low and IWR Low 2 End of Write IS High or IWR Hi...

Page 25: ...ite to IACK Low4 1 5 tCK ns tIKHW Start of Write to IACK High 15 ns NOTES 1 Start of Write IS Low and IWR Low 2 If Write Pulse ends before IACK Low use specifications tIDSU tIDH 3 If Write Pulse ends...

Page 26: ...Disabled after End of Read2 10 ns tIRDE IAD15 0 Previous Data Enabled after Start of Read 0 ns tIRDV IAD15 0 Previous Data Valid after Start of Read 15 ns tIRDH1 IAD15 0 Previous Data Hold after Star...

Page 27: ...d1 15 ns tIKDH IAD15 0 Data Hold after End of Read2 0 ns tIKDD IAD15 0 Data Disabled after End of Read2 10 ns tIRDE IAD15 0 Previous Data Enabled after Start of Read 0 ns tIRDV IAD15 0 Previous Data V...

Page 28: ...0 A12 IAD11 A13 IAD12 GND CLKIN XTAL VDD CLKOUT GND VDD WR RD BMS DMS PMS IOMS CMS 71 72 73 74 69 70 67 68 65 66 75 60 61 62 63 58 59 56 57 54 55 64 52 53 51 100 99 98 97 96 95 94 93 92 91 90 89 88 87...

Page 29: ...CLKIN 38 TFS1 63 D6 IRD 88 PF3 14 XTAL 39 RFS1 64 D7 IWR 89 PF2 Mode C 15 VDD 40 DR1 65 D8 90 VDD 16 CLKOUT 41 GND 66 GND 91 PWD 17 GND 42 SCLK1 67 VDD 92 GND 18 VDD 43 ERESET 68 D9 93 PF1 Mode B 19...

Page 30: ...DSP 2186BST 133 40 C to 85 C 33 3 100 Lead TQFP ST 100 ADSP 2186KST 160x 0 C to 70 C 40 0 100 Lead TQFP ST 100 ADSP 2186BST 160x 40 C to 85 C 40 0 100 Lead TQFP ST 100 ST Plastic Thin Quad Flatpack TQ...

Page 31: ...31...

Page 32: ...C2999 6 3 97 PRINTED IN U S A 32...

Reviews: